Commands,

Features
and Projects

by Claus Kiihnel and Klaus Zahnert
for Parallax, Inc. Press

Warranty

Parallax warrants its products and printed documentation against defects in materials and workmanship for a period of 90 days. If you
discover a defect, Parallax will, at its option, repair, replace, or refund the purchase price. Simply call for a Return Merchandise
Authorization (RMA) number, write the number on the outside of the box and send it back to Parallax. Please include your name,
telephone number, shipping address, and a description of the problem. We will return your product, or its replacement, using the same
shipping method used to ship the product to Parallax.

14-Day Money Back Guarantee

If, within 14 days of having received this book, you find that it does not suit your needs, you may return it for a full refund. Parallax will
refund the purchase price of the product, excluding shipping / handling costs. This does not apply if the book has been altered or
damaged.

Copyrights and Trademarks

This documentation is Copyright 2003 by Parallax, Inc. The SX is a registered trademark of Ubicom. BASIC Stamp and SX-Key are
registered trademarks of Parallax, Inc. If you decide to use these names on your web page or in printed material, you must state:
"(trademark) is a registered trademark of (respective holder)". Other brand and product names are trademarks or registered trademarks
of their respective holders, including iButton, 1-Wire, Hitachi, and any other brand names featured in this book.

Disclaimer of Liability

Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or under any
legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, and any costs or recovering,
reprogramming, or reproducing any data stored in or used with Parallax products. Parallax is also not responsible for any personal
damage, including that to life and health, resulting from use of any of our products. You take full responsibility for your microcontroller
application, no matter how life threatening it may be.

Internet Access

We maintain Internet systems for your use. These may be used to obtain software, communicate with members of Parallax, and
communicate with other customers. Access information is shown below:

Web: http:/Aww.parallax.com
Internet BASIC Stamp Discussion List

Parallax maintains an e-mail discussion list for people interested in BASIC Stamps. The “basicstamps” list server includes engineers,
hobbyists, and enthusiasts. The list works like this: lots of people subscribe to the list, and then all questions and answers to the list are
distributed to all subscribers. It's a fun, fast, and free way to discuss BASIC Stamp programming issues and get answers to technical
questions. This list generates about 40 messages per day and has 2,300 subscribers. Subscribe at www.yahoogroups.com under the
group name “basicstamps”.

http://www.parallax.com
http://www.yahoogroups.com

Preface

The Parallax BASIC Stamp 2p extends the family of the well-known BASIC Stamp
microcontrollers with a wider feature set for an increased number of applications. The BASIC
Stamp 2p has an extended instruction set suitable for more complex projects, making BASIC
Stamp 2 projects easier as well. The BS2p supports the Philips I°C protocol and the Dallas
Semiconductor 1-Wire bus along with the direct control of Hitachi-compatible HD44780 alpha-
numeric LCDs.

For a long time Parallax customers requested an interrupt capability. The implementation of a
powerful polling feature is an answer to this request. Enhancements of additional memory and
I/O were also added to let the BS2p to do “double duty” as a datalogger.

In this book we will explain the entire BASIC Stamp 2 family and provide numerous code
snippets for using these Parallax microcontrollers.

This book is an English translation of our German book “BASIC Stamp 2 — Neue
Eigenschaften — neue Projekte” (ISBN 3-907857-02-X) published in 2002 with numerous
updates for the American market.

As manufacturer of the BASIC Stamp, Parallax offers significant information and application
support on its web site or in printed form. Do not miss a visit on Parallax’'s web site
[www.parallax.com]. This level of support has differentiated Parallax for years and is certainly
a key to the product line’s success.

All code examples used in this book are available for download from
http://mww.parallax.com/bs2pbook.

The authors thank Parallax and especially Ken Gracey for the support of this book. Though
Parallax edited the book in detail, the possibility that German language or mannerisms appear
in the book remains. If you find such errors please report them to Parallax using e-malil
(info@parallax.com).

Lo
Klaus Zahnert and Claus Kihnel

http://www.parallax.com/bs2pbook.
mailto:(info@parallax.com).

11

1.2

13
131
132

14

21

2.2
221
222
223
224

3.1
311
3.1.2
3.1.3

3.2
3.21
3.2.2
3.2.3
3.24
3.25
3.2.6

Table of Contents 7

Table of Contents

BASIC Stamp — an OVEIVIEW.........ceovevuererereseesesieeeeseeseesseneens 11
What is @ BASIC Stamp?......ccceeeeeeererernne e seeseesesee e 14
512z 10 0] 01 VAV A o] o S 19
BS2 MEMOIY ..ccveeieeieeee ettt ste et e e ae e enaenneens 25
Program MEMOIYccvveeieieesee et esee e 25
Data MEIMOIY......coiiiiiiieeie et 28
Which BASIC Stamp is good for my application? 34
PBASIC ...t 37
BS2 INSIUCHION SEL......ovveeiiiiecirierieeiereeesese e 37
Comments about the Instruction Set...........cccooveevinecnenne, 110
SERIN and SEROUToooiiiiieieeeeeee e 110
RUN .o 119
Switching the I/0 Blocks with the BS2pccccvvcvevevvreinnnene 124
Interrupting by Polling the BS2pcccoovvvvvvereceeee e, 125
ENhanCed /O ..o 133
PC-BUS. . rrvvvvrrssseeeeressesssssseesssssssssssssesssssssss s ssssssssssesesssees 133
Printer Control with PC OUIpUL........ccccccevvvvre e 135
Reading and Writing EEPROMSccocooiiiinnieierene 139
LCD-Controller PCF2116 0N IPC-BUS.........oovvveereesereererreennee. 143
1-Wire INterface.coovveerereiieseese e 154
SOME BASICS ..ottt 154
L1-WIre DRVICES.....cecuirieeeeeriereeieste sttt 156
ACCESS 10 IBULIONS ... 162
Identification Of IBULLONSccccvveinrcereeereee s 163
Access Control With IBUtONS ..o 168

Measuring of Temperature with DS1920........cccccecevervrernnne. 174

8 Table of Contents

3.2.7
3.2.8
3.3
331
3.3.2
3.33
3.4
35

4.1

4.2
421
422
423
4.2.4

51
5.2

6.1

6.2
6.2.1
6.2.2
6.2.3
6.2.4

6.3

6.4

6.5

External Memory with DS1994ccccevvvievienenieseeeeeeieneens 177
Timer With DS1994 ..o 182
Controlling LCDs with the HD44780 Controller 187
LCD Module with the HD44780 LCD Controller.........c.cccoce... 187
Parallel Control of an LCD Module...........ccccoiveiineneienenienenn 192
Serial Control of an LCD Module............ccocovineininenncienn 208
Interface to the PC Keyboard............ccooveeriininininenenceiens 210
Port Enhancement with Shift Registers..........c.ccooveririeienene 216
BASIC Stamps on the Net.........cccooioiinieeeeeeeeeiee 221
MondoMini WeRSErVer ... 221
BASIC Stamp connected to the MondoMini Webserver........ 222
Sending E-MalilSccccevveiieienesene e 224
Query of Variablescccoevevvrienie e 227
Changing of Variablesccccocvivvererieiesese e 230
BASIC Stamp Monitoring SYSteM........cccceveevvreneseneereeseenenns 233
01T To = 101, 0o (=T o TS 241
Basic Functions of a MOdem...........cccecveirinineieneseeseeee 241
Remote Alarm via MOdem...........ccoeeeireneininee e 242
Additional APPlICALIONS........cccceririiiiirereee e 247
Switching High Currents and Voltages...........ccoovevericeieenennen. 247
Networking of BASIC Stamps using RS-232 and RS-485 ...250
Point-to-Point CONNECHIONcccvveeirerreriereeseseeee e 250
BASIC Stamp NEtWOIKccccovrvrerireeiereesese e e e sseeseeneeneens 254
Scalable Node Address Protocol S.N.AP. ..o, 260
Data Transmission According to RS-422 and RS-485 270
Evaluation of GPS INformation............cceveerreennncnneeniennns 272
Measuring Tilt and Acceleration...........cccoceveeveevienieniescereeseneens 279

Data Display with Stamp PIot Lite..........cccoooeiiiinineniieeiee 284

Table of Contents 9

Y 0] =1 o [289

7.1 Examples to Wiring the 1/O Pins........cccocvivvivienececcevese 289
7.11 [0S T 289
7.1.2 TONE OULPULeeeeeieeie e see e e e eae e sneens 289
7.2 Baudmode Parameter in SERIN and SEROUT 291
7.3 Hayes Command Set........cocveiirriere e 292
REFEIENCE ... 295

Chapter 1: BASIC Stamp — an Overview 11

1 BASIC Stamp — an Overview

For years Parallax’s BASIC Stamp microcontrollers have been well-known for their ease of
use, comfortable programming language and easy debugging using a PC.

BASIC Stamps are not just for engineers (one could also say they are not just for hobbyists,
too). Everybody interested in measurements, control and human interaction with electronic
circuits will find ease of entry and continuous success with these devices. It's amazing what
can be done with a small feature set.

Parallax’s educational program "Stamps in Class" introduces new interested parties to this
subject with well-designed free tutorials and ready-to-implement class curriculum.

The BASIC Stamp 2 family consists of several variations. Though an overview of technical
specifications of all models is helpful to see the differences, Parallax often leads newcomers
to the BASIC Stamp 2 and BASIC Stamp 2p due to extensive application support.

T-TU TR T T
—a " L)

BS2

Microcontroller

Clock

EEPROM

Length of program
RAM (Variable)
Input/Outputs

Output current(Source/Sink)
Current consumption
PC Interface
Package
Dimensions

PIC16C57 SMD

20 MHz

2K Bytes

500 Lines PBASIC Code

6 1/0, 26 Variable

16

20mA /25 mA

7 mA Run, 50 pA Sleep

Serial Port

24-Pin DIP Module (green PCB)
30mMmmLx16 mmwWx9mmH

12 Chapter 1: BASIC Stamp — an Overview

Microcontroller
Clock

EEPROM

Length of program

RAM (Variable)

Input/Outputs

Output current(Source/Sink)
Current consumption

PC Interface

Package

Dimensions

BS2sx

Ubicom SX28AC/SS

50 MHz

8 x 2K Bytes

4000 Lines PBASIC Code

6 1/0, 26 Variable

plus 63 Byte Scratch Pad RAM
16

30 mA/30 mA

60 mA Run, 200 pA Sleep
Serial Port

24-Pin DIP Module (blue PCB)
30mMmmLx16 mmwWx9mmH

Chapter 1: BASIC Stamp — an Overview 13

BS2e
Microcontroller Ubicom SX28AC/SS
Clock 20 MHz
EEPROM 8 x 2K Bytes
Length of program 4000 Lines PBASIC Code

6 1/0, 26 Variable

RAM (Variable) plus 63 Byte Scratch Pad RAM

Input/Outputs 16

Output current(Source/Sink) 30 mA/30 mA

Current consumption 20 mA Run, 200 pA Sleep
PC Interface Serial Port

Package 24-Pin DIP Module (red PCB)

Dimensions 30mmLx16 mmWx9mmH

14 Chapter 1: BASIC Stamp — an Overview

Microcontroller
Clock

EEPROM

Length of program
RAM (Variable)
Input/Outputs

Output current(Source/Sink)
Current consumption

PC Interface

Package

Dimensions

BS2p

Ubicom SX48AC

20 MHz Turbo

8 x 2K Bytes

4000 Lines PBASIC Code

12 1/O, 26 Variable

32 Bytes (6 for /0O and 26 for Variables)
plus 32 Byte Scratch Pad RAM

30 mA /30 mA

40 mA Run, 60 pA Sleep

Serial Port

24-Pin or 40-Pin DIP Module (gold
PCB)

24-Pin: 30 Lx 16 W x 9 H (mm)
40-Pin: 53 L x 16 W x 9 H (mm)

1.1 What is a BASIC Stamp?

Anyone experienced with a BASIC Stamp can already able to answer this question. Skip to

the next subchapter if you do not need this information.

Users with no BASIC Stamp experience will find the next few pages to be useful background

information.

The BASIC Stamp is a single board computer containing the microcontroller, an EEPROM, a
voltage regulator and reset circuitry. As Figure 1 shows, 24 1/O pins are available for

peripherals.

Chapter 1: BASIC Stamp — an Overview 15

souT[~ & EVIN
SIN[Z g Evss
ATN[3] [z| RES
vss[d [z1] vDD
Po[3] | P15
P1[d] [15| P14
P23l [| P13
P3[sl [. [7| P12
P4[9l [P11
P5[id [P10
P6[[+ P9
P7[ad [z P8

BS2-IC

Figure1 BS2-IC

The pinout listed in the following table shows all I/O resources in detail. In the left column the
notation BS2x-24 stands for all 24-pin BS2 modules according to Figure 1, while the second
column applies to the 40-pin BS2p only.

Pin Pin
1 Name Function
BS2x-24 BS2p-40
1 1 SOUT Serial output (to RxD of the PC COM Port)
2 2 SIN Serial input (from TxD of the PC COM Port)
3 3 ATN Attention (to DTR of the PC COM Port)
4 4 VSS Ground (to GND of the PC COM Port)
5-20 5-20 PO-P15 Digital I/O pins
21-36 X0-X15 Digital I/O pins

21 37 VDD + 5V DC I/O (stabilized)
22 38 RES Reset I/0
23 39 VSS Ground
24 40 VIN +5,5- 12 V DC input (not stabilized)

Table 1. The “x” refers to a model number of BASIC Stamp in the BS2 series.

16 Chapter 1: BASIC Stamp — an Overview

Connecting 5 to +12 VDC to V\y and the internal voltage regulator provides a stabilized
voltage of +5 VDC at Vpp.

If you want to power the BASIC Stamp with a reliable voltage of +5 VDC then connect it to Vpp
directly. The V pin could remain disconnected in this case.

With the reset pin it is quite similar. An internally generated Reset (power-down reset) pulls
the RES pin low during the reset phase. An external pulling of RES to low can also force a
reset. Both pins (Vpp and RES) have I/O characteristics.

The BASIC Stamp Module must be supplied with one voltage only (possibly a battery) and will
run a program after program immediately after downloading.

This sounds very easy and it is! Figure 2 shows the complete programming infrastructure
required.

PC running BASIC Stamp Editor BASIC Stamp 2

Figure 2 BASIC Stamp Development Environment

If you want to save some money, you can make the required download cable connections
from a standard serial cable with the BASIC Stamp module plugged into a breadboard. Figure
3 shows the programming connection. The BASIC Stamp Editor is available as a Windows or
DOS program from Parallax’s web site for free. At the time of this publication Parallax is about
to release a link for Linux, Macintosh and Palm operating systems that would enable
developers to design their own IDE and download environments for different operating
systems.

Chapter 1: BASIC Stamp — an Overview 17

w
. 1[H souTt VIN [24
PC Serial Port 201 sIN VSS 23
3 ATN RES 22
/._h 4pvss VDD 21
DSR _.6 51 PO P15 20
.2 RX 60 P1 P14 19
RTS _‘7 710 P2 P13]18
.3 TX 81 P3 P12 OJ17
.B 9d P4 P11 16
.4 DTR 102 P5 P10 15
.9 11 P2 P6 P9 |14
.5 GND 120 P7 P8 |13
N BS2-IC
Module

Figure 3 BS2 Download Connection

Let’'s have a look at how an application could be coded to run on the BASIC Stamp.

The BASIC Stamp Editor must first be installed on the development PC. Parallax offers a
detailed “Quick Start Guide” in the BASIC Stamp Manual.

Parallax offers a DOS Editor for each type of BS2 and a single Windows Editor for all types of
BS2s.

Figure 4 shows the BASIC Stamp Editor StampW. This programming software is very easy to
use.

18 Chapter 1: BASIC Stamp — an Overview

=3l x|

-'-ffi';/'BASIE Stam - CProgramme’,BASIC Stam,
! File Edit Direckive Run Help

T DEaHE| & 'aRi F L2220 DREFK | &48&8 €
* ledshe2 serialbs2 |swﬂche&bs2|

. |LED con 8
. |R=D con 9
" |T=D con 10

| |paud con 39e+84000

char wvar byte
temp var byte

‘letart =erin ExD. ba B
low LED] i] i +

pause 500 : Pl pme%tl '5}‘5“‘.‘[# 4
high LED : i I
char = char +
serout T=D, bs
goto start

Coppright: 2001

. |end

[| | | 4
Figure 4 BASIC Stamp Editor StampW

If the PBASIC source is free of any errors, then it can be compiled and downloaded to the
BASIC Stamp.

The downloaded tokens will be saved in the BASIC Stamp’s external EEPROM. The BASIC
Stamp’s microcontroller contains the PBASIC firmware called a “token interpreter”. This token
interpreter is responsible for running the downloaded tokens and represents Parallax’s core
intellectual property. The download procedure is the same for all types of BS2s and should not
considered in detail here but is discussed in some detail in other resources found on the web
(see Brian Forbes’ book “Inside the BASIC Stamp 2).

A list of all available PBASIC commands follows in one of the next chapters.

Chapter 1: BASIC Stamp — an Overview 19

1.2 StampW Editor

Using StampW you can develop programs for all types of BS2s in a Windows environment.
StampW can be used from an intuitive standpoint like other Windows application programs.
Therefore, this book describes only the more specific features.

To tell the compiler which type of BS2 is described in the PBASIC some innovations were
introduced:

STAMP Directive
Different file extensions
Default Stamp Mode (set over the menu Edit>Preferences)

The STAMP directive must be used at the beginning of the program. For example, this
directive looks for a BS2p:

' { $STAMP BS2p}
' Directive shows that this is a BS2p program

If you don't insert the directive the BASIC Stamp Windows Editor will add it for you by
presenting a pull-down menu and asking you to select a BASIC Stamp.

For the other members of the BS2 family the directives are as follows:

' {$STAMP BS2} " valid for BS2
' {$STAMP BS2sx} ' valid for BS2sx
' {$STAMP BS2e} ' valid for BS2e

20 Chapter 1: BASIC Stamp — an Overview

For the file extensions the following is valid:

flename.bs2 characterizes a source file for BS2
flename.bsx characterizes a source file for BS2sx
flename.bse characterizes a source file for BS2e
flename.bsp characterizes a source file for BS2p

Using the Edit>Preferences menu you can set the Default Stamp Mode and different
directories for saving the source programs. Figure 5 shows the setup possibilities in the menu
Edit>Preferences>Editor Operation.

Preferences =10] =]
Debug Appearance Debug Function | Debug Part |
Editor Appearance Editor Uperation
—Stamp Mode and Port:
Default Com Part: IEDM1 'I |
Default Project Download Mode: I Modified l
r—Directorie:
BE1 Directary: I Browse,.. I

BS2 Directory: IC:\Programme'\BASlC StamphBS2 Browse... I
B52e Directory: IC:\F‘rogramme'\BASlC StampbBS2 Browse... I
BSZsx Directary: IC:\F‘rogramme'\BASlE StamphBS2 Browse... I
BS2p Directary: IC:\Programme'\BASlE StampbBS2 Browse... I

r—File:
b axirnuim Files in History: IE 'l

Azsocistions: [BS2 | BSE ¥ BS¥ |V BSP

[Check file associations at startup

Festore Defaults |

ok LCancel |

Figure 5 Directory Setup

To test the communication with a connected BASIC Stamp, you can use the Identify Function
in the Run>ldentify menu. Figure 6 shows the response from a BS2p after you've sent the
Identify command.

Chapter 1: BASIC Stamp — an Overview 21

Identification x|

Port Status:

Part; Device Type: I‘»-’ersiu:un: ILDprack: IE::hu:u: I
COM1T: |BASIC Stamp 2p24 vl 2 ez ez

Edit Port List | Refresh |

Figure 6 Answer to Identify

Before download you can check the syntax with Run>Check Syntax. Syntax errors found will
be marked — but undefined commands as “nonsense®, for example, stay unrecognized.

The use of the BASIC Stamp resources can be inspected via Run>Memory Map. Figure 7
shows a memory map from this pull-down menu.

22 Chapter 1: BASIC Stamp — an Overview

#3 Memory Map - EEPROM 1%o Full {(D:var.bsp) — | Ellil
Detailed EEPROM Map RAM Map

E'hI2|3|4IEIBI?ISISIAIBIEIDIEIFILI e H41312 111033 76643210

(o2l ouTs:

630/ piRs: RN

|EAD Giach 0 |

[T REGT: NN T T T T 1]

ECI REGZ LT TTTTTTTTTTTTT]

500 REGZ: LT T TTTTTTTTTTTIT]

EED REG4 [T T T TTTTTTTTTTTT]

o REGS: CTTTTTTTTTTTTTTT]

= REGE: LT T TTTTTTTTTTTT]

700 REG7: [T LTI TTTTTTTTITT1]

i REGe: LT T T TTTTTTTTTTT]

720 REGS: LT TTTTTTTTTTTTT]

730 REGICCLCTTTTTTTTTTTITTIT]

740 REGI:CLITITTTTTTTTTTTTT]

==l REGIZCT T T T TTTTTTTTITTIT]

750 Condensed

ﬁ EEPROM Map Source Code

760)

m EPROM Legend

|FA0 B - Undef. Data

IFBD [-Def. Data

FCO B - Program

70l [- Urwzed

FEO)00 00 .

7F0 - ™ Dizplay A5CI

Figure 7 Memory Map

In the left half of the memory map you’ll see the 2 KByte EEPROM. For BS2p and BS2sx this
is only one slot of program memory. On the right side all 32 bytes of RAM are listed. The
Scratch Pad RAM is not shown.

To the usage of EEPROM and RAM by the BASIC Stamp is detailed in the following
examples.

StampW offers some new features with the Debug Window. Using the Run>Debug menu
you can open the Debug Window. Output from the BASIC Stamp’s Debug command will be
redirected automatically to the Debug Window. But this isn’t all it can do.

The programming port can be used for bi-directional communication between a Debug
Window and a BS2. The following example demonstrates bi-directional communication on a
BASIC Stamp Activity Board:

Chapter 1: BASIC Stamp — an Overview 23

' {$STAW BS2p}

serstring var byte(3)

| oop:
DEBUG CLS,"D: Waiting for 3 chars from Debug Wndow. . ."
' SERIN 16, 84, [SITR serstring\3] ' for BS2
SERIN 16, 240, [STR serstring\3] ' for BS2p
DEBUG CR "D String = ",STR serstring, CR CR

' SEROUT 16, 84, ["Reflected characters: ", STR serstring\3]' BS2
SERQUT 16, 240, ["Reflected characters: ", STR serstring\3] ' BS2p

L1:

IF INL1 = 0 THEN L1

' press red key on activity board to proceed
got o | oop

After the start of the program the DEBUG command sends the string “D: Waiting for 3 chars
from Debug Window...” and the SERIN statement waits for exactly three characters.
Operating with I/O “Pin 16", SERIN is redirected to the PC’s serial port and the BASIC
Stamp’s DEBUG window. The programmer interface communicates with the Debug Window
with the DEBUG command.

After receiving these three characters the second DEBUG command sends the string "D:
String = ___". The characters received replace the underlined part of the string. After the
DEBUG command is executed the BS2p sends the received characters with SEROUT
command to the DEBUG Window.

At the end of the loop I/O Pin 11 is checked (if you're using the BASIC Stamp Activity Board
this is the red button) and the program will decide whether or not the whole procedure should
be repeated.

Sometimes long instruction lines in our program examples will be broken with what appears to
be a carriage return. Please pay attention that in the first column where a label begins a
routine. Exceptions are the definitions at the beginning of the program. If you see a character
in the first column in the body of the program then this instruction line was too long to print.
During compilation such a broken line would be found and signalizes an error. Note that all
program examples are available from download from www.parallaxinc.com/bs2pbook.

Figure 8 shows the communication between the BS2p and the Debug Window for the test
program.

http://www.parallaxinc.com/bs2pbook.

24 Chapter 1: BASIC Stamp — an Overview

The Debug Window has two important aspects. The large area in the lower half of the window
shows all output of DEBUG and SEROUT 16,..., while the white box above serves as an input

line for those characters expected from SERIN.

#37 Debug Terminal #1 E -10| x|
Com Port: Baud B ate: P arity:
[comt =] foeoo w| [Wone)
Data Bits: Flows Contral; & T% [DTR [~ RTS
8 =l ot | ¢ R @DsH e cIs

123ahd|

I: Waiting for 2 chars from Debug Window...:
be

Li: Btring = ahc

Bezflected characters: abc

Eapture...l Macrus...l Pauze | Clear | Cloze |

Figure 8 Debug Window

Defining macros can help to simplify the repeated key-pressing during debugging.

Figure 9 shows two macros we defined called Stringl and String2. If one presses Ctrl+Shft+A
during debugging then the characters "xyz" will be sent to the BASIC Stamp.

Chapter 1: BASIC Stamp — an Overview 25

#jrMacro Keys o] [|
Current b acros: Hame: K
Kep |Mame |Data ;| |String2 ICtrI+Shft+B |
Chrl+Shit+8 Shingl Wz Data:
Ctil+Shit+B |Sting2 abcc.l |

Figure 9 Defining Macros

You can save these definitions in macro files with the extension MCR for further usage.

1.3 BS2 Memory

In the ROM of a BASIC Stamp the token interpreter is saved. The program is saved as tokens
in an external EEPROM located on the BS2-IC. Rarely changed information such as
configuration data, for example, can be saved in this EEPROM too.

Data is stored in the BASIC Stamp’s RAM. After restarting the BASIC Stamp the entire
contents of RAM is cleared.
1.3.1 Program Memory

Aside from the original BS2 all other BS2 types (e, SX, p) support a program memory of eight
times 2K bytes. With the newer BS2 styles you can define projects consisting of up to eight
different programs. Each sub-program can be saved in one program slot of 2 K bytes.

You can save additional program modules, mathematical routines, drivers, text prompts for
the user dialogue, calibration data or setup information in these additional program slots.

In this case you may utilize a Stamp directive option Listing all the files to be considered. This
Stamp directive must be placed in slot #0 at first.

The examples explain a project with program modules in three different program slots.

26 Chapter 1: BASIC Stamp — an Overview

The following figures show the creation of three separate source files named project.bsp,
aaa.bsp and bbb.bsp. In the files there is no useful source code, just comments. Even though
there’s no code you can compile these files without any error.

Figure 10 shows all three source files in the Editor window. The leading “0:* marks that each
of these source files is prepared for slot #0 by default. This means, we have three separate
and independent programs.

-'-Tff';/'BASIE Stamp - C:\ProgrammeBASIC Stamp',BS2p' project.bsp =10 =l
File Edit Directive Run Help

DEed & +taBhn & #4220 DREAPK &&A& &
D:aaa.bspl D:bbb.bspl

'{$5TAMP BSZpl

' Hier folgen die PBASIC Anweisungen

end
| 1:14 | Modfied |[Downloaded | 4

Figure 10 Creating independent source files

To link these programs to one project we have to add these programs to the Stamp directive
in the main program in slot #0 ' { STAMP BS2p, aaa, bbb}. After a new compilation the
files are linked.

After reset the BASIC Stamp starts the program in slot #0 by default. Therefore, we place the
main program with the extended Stamp directive in slot #0.

Figure 11 shows the revised Stamp directive and the files aaa.bsp and bbb.bsp linked to the
project project.bsp.

Chapter 1: BASIC Stamp — an Overview 27

The tabs of the sub-programs for slot #1 and slot #2 show with their naming
[project]1l:aaa.respectivelly [project]2:bbb.bsp to which project (project.bsp) they were linked
and in which program slot they are located.

/ BASIC Stamp - C:\Programme’,BASIC Stamp'B52p'bbb.bsp o =] 4|
File Edit Directive Run Help

DEad & B 222y DREAPK &&H4 &
O:project.bsp I[proiect] 1:aaa.bsp| [project] 2:bbb.bsp|

'{$STAMP BS2p. aaa. bhH}

' Hier folgen die PBASIC Anweisungen

end

| 21 | M odified |Downl0aded |T0kenizex’D0wnIoad Successful 5

Figure 11 Linking of source files to a project

The RUN command starts the programs saved in different 2 K memory slots. As previously
mentioned, after reset the program in slot #0 starts by default and therefore the main program
must be located in program slot #0.

You can launch a program from slot #0 use the command RUN 1, for example. After RUN 1
the first instruction in program slot #1 will be operated.

If you want to redirect to program slot #0 again then use RUN 0 from within program #1. Here
too, the first instruction in program slot #0 will be executed. You can jump back and forth
between programs, always starting with the first instruction.

Pay attention to this difference from normal subroutine techniques. If you switch to another
program slot the first instruction of the new slot will be the next instruction executed.

28 Chapter 1: BASIC Stamp — an Overview

In the highest location of the Scratch Pad RAM (127 in BS2p) is the number of the actual
program slot saved. Saving this information before branching to another program slot holds
the pointer for return.

Some examples will show that working with different program slots is less difficult than you
may have expected.

1.3.2 Data Memory

All BS2s have data memory of 32 bytes. Each bit of these 32 bytes is individually addressable
using modifiers. Table 1 shows the RAM organization valid for all BS2 types.

Chapter 1: BASIC Stamp — an Overview 29

Word Name |Byte Name |Nibble Name Bit Name Purpose
INS INL INA, INB, INO-IN7 Inputs
INH INC, IND IN8-IN15
OUTA,
owrs (O [oureouteout loupus
OouTD

ORS |DiRn |DIRC.DIRD |DIRe-DIR1s |0 Convo
Wo o)

w1 o

w2 o

w3 i

w4 o0

Ws g

We lpj

Wi Jes

we gy

we g

W10 o2

w11 oo

w12 oot

Table 1 BS2 RAM Organization

30 Chapter 1: BASIC Stamp — an Overview

The access to the RAM is organized by variables. You have to declare all variables in the
source code.

X var byte ' Declares a Variable
y var word

z con $5555 ' Defines a Constant
y = Initialize Variabl e

2 '
DEBUG HEX y, CR

BO = $AA ' Wite Register BO directly
DEBUG HEX y, CR

In our program example two variables (x and y) were declared. Variable x has a byte format
and variable y word format. For completeness we find the constant z. A constant consumes
no memory in RAM.

Have a look at the Memory Map in Figure 12. You can see the usage of the registers and you
will recognize a word variable in REGO (W0) and a byte variable in REG1 (W1).

Chapter 1: BASIC Stamp — an Overview 31

Menmory Map - EEPROM 126 Full {D:var.bsp) - |EI|5|
Detailed EEPROM Map RAM Map

D|1|2|3|4|5|E|?|8|9|AIBICIDIEIFI‘I . B34 1N103 387654321010
220 ouTs:
630} pirs: RN
[reGO: I
[EI REGT: NN T T T T T1]
GCO REG2 [LTTTTTTTTTTTTTT]
il REG: LT TTTTTTTTTTTTIT]
D REG4: [T T TTTTTTTTTTTTT]
Bl REGS: (LT TTTTTTTTTTTTT]
= REGE: (LT TTTTTTTTTTTTT]
700 REG7: LTI T T I ITTTTITTIT1]
710 REGs: [T T T TTTTTTTTTTT]
720] REGS: CLTTTTTTTTTTTTTT]
730 REGIOCCLTTTTTTTTTTTTTT]
740 REGI:CLITTTTTTTTTTTTTIT]
750, REGIZ2[IT T T T TTTTTTTTTTT]
7EO Condensed
ﬁ EEPROM Map Source Code
760
@ EPROM Legend
|70 B - Undef. Data
Ji=lt) [- Def. Data
7O B - Frogram
700 [- Unuged
FEO)O0 00 .
F= - [~ Dizplay ASCH

Figure 12 Memory Map

After initialization of the variable y their value can be displayed with DEBUG. The first DEBUG
(in single step) will display the hex value $5555 in the Debug Window as expected.

In the next step the value $AA is written to register BO directly. The second DEBUG shows a
different low byte of the word variable y.

In more complex declarations of variables the direct access to registers is fully customizable
yet requires some care to avoid program errors.

PBASIC has a lot of modifiers for variables and you can work without direct access to
registers. Table 2 lists these modifiers.

32 Chapter 1: BASIC Stamp — an Overview

Symbol Definition
lowbyte Low byte of a word
highbyte High byte of a word
byteO Low byte of a word
bytel High byte of a word
lownib Low nibble of a word or a byte
highnib High nibble of a word or a byte
nib0 Nibble 0 of a word or a byte
nib1 Nibble 1 of a word or a byte
nib2 Nibble 2 of a word
nib3 Nibble 3 of a word
lowhbit Lowest bit of a word or a byte or a nibble
highbit Highest bit of a word or a byte or a nibble
bit0 BitO of a word or a byte or a nibble
bit1 Bit1 of a word or a byte or a nibble
bit2 Bit2 of a word or a byte or a nibble
bit3 Bit3 of a word or a byte or a nibble
bit4...bit7 Bit4 to Bit7 of a word or a byte
bit8...bit15 Bit8 to Bit15 of a word

Table 2 Modifiers for Variables

These variable modifiers organize access to the content of these variables. Try some
experiments with a small test program to get more familiar with the usage of these modifiers.

' {$STAWP BS2}

X var word
y var byte
z var NB

X = $ABCD

DEBUG " Wor d: ", HEXx , R

DEBUG "Low Byte of Wrd : ", HEX x.lowbyte , COR
DEBUG "H gh Byte of Wrd: ", HEX x. highbyte , CR
DEBUG "N bble 2 of Wrd: ", HEXx.NB2 , CR CR

Chapter 1: BASIC Stamp — an Overview 33

y = X. | owbyte

DEBUG "Low Byt e Wrd: ", HEXy, CR
DEBUG "H gh N bbl e of Low Byte of Wrd: ", HEXy.highNB, CR

All BS2x types with exception of the original BS2 have a so-called Scratch Pad RAM. The
Scratch Pad RAM is 64 bytes for BS2e and BS2sx and 128 Bytes for BS2p.

For access to Scratch Pad RAM we use the commands GET and PUT.

The highest location of Scratch Pad RAM (127 for BS2p, otherwise 63) contains the number
of the actual program slot.

For the BS2p the high nibble of this cell contains a pointer to that program slot where the
commands READ and WRITE operate.

Here is a small program example with DEBUG outputs (Figure 13).

' { $STAW BS2p}

poi nter var byte

STCRE 5 ' READWR TE in Slot #5

CET 127, pointer ' Read Slot Pointer in Scratch Pad

DEBUG CR, "Running Programin Slot #', DEC pointer & $0F
DEBUG CR, "READ WR TE in Slot #', DEC pointer >> 4

end

34 Chapter 1: BASIC Stamp — an Overview

=10l %]

/ Debug Terminal #1 3
Com Port: Baud B ate: P arity:
fcomt =) foeoo =] [Wone)

D ata Bits: Flaw Cantral; & T% [DTR [~ RTS

e = Jof =l @R DR @ cTs
—

Punning Program in Slot #0

Eapture...l Macrus...l Pauze | Clear |

Figure 13 Query for slot numbers

1.4 Which BASIC Stamp is good for my application?

Now you will ask more than ever "Which BASIC Stamp should | use for my application?".

Parallax now offers (including the BS1) seven different devices or modules and you have to
calculate performance versus costs to choose the best module for your project. But it's really
not that difficult — we think you have two choices.

If the costs are not so important then use the BS2p. If this is not realistic and must be rejected
decide on the module that has sufficient performance and a favorable price. Start with the
BS2-IC and consider the BS2e-IC or BS2SX-IC only if you have an identifiable need for the
extra speed and memory these modules feature. Otherwise use the BS2p or BS2-IC.

Development can always be justified with the module having the highest performance or cost,
but in production you have to lower the costs. This can be accomplished in all cases by using
the PBASIC Interpreter chips, the core of a BASIC Stamp.

To get an overview to the prices see Table 3. These prices come from Parallax’s Product
Catalog (2003) and will always differ from Parallax distributors.

Chapter 1: BASIC Stamp — an Overview 35

BASIC Stamp Price

BS2 US$ 49
BS2e US$ 54
BS2sx US$ 59
BS2p-24 US$ 79
BS2p-40 US$ 99

Table 3 BASIC Stamp 2 Prices (USA)

Chapter 2: PBASIC 37

2 PBASIC

The BASIC Stamp understands a special BASIC dialect — called P(arallax) BASIC. The
instruction set differs by BASIC Stamps slightly, mostly through the addition of more
instructions for newer BASIC Stamps and adjustments in execution speed.

These differences are the basis for different performance and the resulting price.

2.1 BS2 Instruction Set

In the following pages the PBASIC instructions of all BS2 types will be presented.

This compilation cannot replace the original documentation. Download the BASIC Stamp
manual V.2.0c containing 351 pages for current information. If needed you can download this
2 MB manual from Parallax’s website for free (it also comes on the CD-ROM with your on-line
orders).

The BASIC Stamp Editor StampW (now in V.1.31) offers a comfortable on-line help system as
well. Figure 14 shows the PBASIC command reference.

Figure 15 shows the explanation to the BRANCH command as an example, while Figure 16
shows a program example to this command.

The PBASIC help system details all PBASIC commands for all BASIC Stamps.

38 Chapter 2: PBASIC

E? PBASIC Syntax Guide

=
Hide Back Frint Optians

IS [=] e

LContents |Igdex I §aarch|

@ A elcam:
(0

G
Command R
Alphabetical Listing

PBASIC Command Reference

L
1 2 2E SH 2P

Alphabetical Listing

* Note: For B51/8S2-compatible commands, syntax shown below is in BSZ2 format. Some commands may use
slightly different formatting with the BS1.

BRANCHING / PROGRAM CONTROL

o then YR/
serancH G2 EEL
* GOTO JzimE]
+GOSUB HEEE
-peTuRn HEZIEEL]
«BUN |
+ POLLRUN |
+ STCR =] O
LOOPING
sror.HEXT HEIEL
EEFPROM ACCESS

+ EEFROIM 4
4]

IF Condition THEN AoGhress

BRANCH ot [Adidrass], Addrass?, .. Addrasshif *
GOTO Agighess

GOSUB Agirass

RETURN

RUN SrogramsSiot

POLLRUN FrogramsSiot

STOP

FOR Countar = StariVaise TO SngVaie {STEP StepValel

EEPROM {iocation} (Dataftem {, Dataltem, ... 0

o NEXT

Figure 14 PBASIC Help System — Command Reference

Chapter 2: PBASIC 39

PBASIC Syntax Guide =10] x|

S

Hide Back nl Options

|»

LContents |Igdex I §aarch|

BRANCH
@ ‘welcome
E@ FBASIC Command Feference ¥
- [£] iphatetical Listing £ § @ '@ *
1 2 2E SH 2P Examgles

Syntax 1 : BRANCH &ifset, (ddidrassi, Addresss, ... Addressiit
Syntax 2WA1 BRANCH Of5et fAddrass, Aodhesss, .. Addressii}

Function
Go 1o the address specified by offsst {if in range).

® Offsetis a variable/constant/expression® (0 - 255 that specifies the index of the address, in the list, to
branch to (0 - M)

s Addresses are labels that specify where o go. BRANCH will ignare any list entries beyond offset 255,

* U Note: Exprassions are nat allowed as arguments on the BS1,

Quick Facts
BS1 BSZ, BS2e, BSZsy and BS2p b
L elr AEiEiess Limited only by memary 256
entries
Explanation

The BRANCH instruction is useful when you want 10 write something like this:

IF value = 0 THEN case 0 ' value = 0: go to label "case 0"
IF walue = 1 THEN case 1 ! walue = 1: go to label "case 1"
IF wvalue = 2 THEN case_2 ' walue = 2Z: go to label "case_ 2"
*fou can use BRANCH to organize this into a single staterment: ;I

Figure 15 PBASIC Help System — Explanation BRANCH command

40 Chapter 2: PBASIC

E? PBASIC Syntax Guide O] x|

L E I B

Hide Back Frint Optians

|»

LContents |Igdex I §aarch|

N BRANCH Examples

() PBASIC Command Reference @ @ @ @ P
- [E] lphabetical Listi 4 y
@ phabetical Listing i . o A L 3 i Syt

' BRAMNCH.EBAS
' This program shows how the value of idx controls the destination
' of the BRANCH instruction.

' {$3TAMF ES1} STAMP directive (sSpecifies a B3l

SYMEOL idx = EO

Starc:

FOR didx = 0 to 3
DEBUG ™idx: ™, #idx ==
BRAMCH idx, (Casel, Casel, Casel) If idx = 0..2 branch to specified lakel
DEBUG "BRANCH target esrror.",CR message if idx is out of range

NEXT
GOTO Start
Casel:
DEBUG "Branched to Case0",CR
GOTO 3Start
Casel:

DEEUG "EBranched to Casel®™,CR
GOTO Start

Casei:
DEEUG "EBranched to Case2®,CR
GOTO Start
-
sl | »

Figure 16
PBASIC Help System — Program example BRANCH

In the program examples we will often use commands that have not been explained. It is
normal in such a reference as this book to page forward and backward sometimes and use
the on-line help for more detail.

To get a clear structure we will start with each PBASIC command on a hew page. You can
use the empty room for some comments.

The command for serial /O SERIN and SEROUT will be directed to I/O pin 16. In these cases
the serial I/O works over the programming connection and the serial 1/O is redirected to the

Chapter 2: PBASIC 41

Debug Window in the Stamp Editor. The DEBUG command automatically connects to these
I/O pins.

If /O Pin 16 (Rpin = 16 or Tpin=16) used for serial communication then the BS2 works with
inverted polarity and active output of the transmitter independent of the Baud mode parameter.
In this mode Bit 14 (Polarity) and Bit 15 (output driver) are not relevant.

42 Chapter 2: PBASIC

AUXIO BS2p-40
AUXI O

The commands AUXIO, MAINIO, and IOTERM control the access to the I/O pins of the BS2p-
40.

AUXIO redirects all I/O operations from MAINIO (P0-P15) to AUXIO (X0-X15).
After reset MAINIO is default.
For BS2p-24 the commands AUXIO, MAINIO, and IOTERM have no effect.

Example:

' { $STAW BS2p}

high 0 ' OutputO (Pin5) Hi

AUXI O ‘ Switch to Auxiliary |/O Pins

| ow O ' Qutput0 (Pin21) Lo

MAI NI O ' Switch to Main I/O Pins

| ow O ' Output0 (Pin5) Lo

AUXI O ' Switch to Auxiliary I/O Pins

high 0 ' Qutput0 (Pin21) Hi

end

Remark:

I/O Pin 0 (PO) is set and subsequently the BS2p-40 will be switched to AUXIO. Low O resets
I/O pin X0 to low afterwards.

After redirection to MAINIO low O resets PO to low.
After a new redirection to AUXIO high 0 sets X0 to high.

Chapter 2: PBASIC 43

BRANCH

BS2 BS2e BS2sx BS2p

BRANCH of fset,[addr0, addril,..., addrN

Branch of program flow

offset
addr

char
val ue

| oop:

aaa:
bbb:

CCcC:

It means:
Pointer in address list

element in address list (address, label)

Example:
var byte
var byte
value = 255 ' initialize value to FFH
Read serial interface
SER N 16, 84+$4000, [char] ' 9600 Baud for BS2

Filter character "A', "B"' and "C'
LOCKDOM char, [65, 66, 67] , val ue

Branch
BRANCH val ue, [aaa, bbb, ccc]
DEBUG CLS
goto | oop

DEBUG CLS, "Character was A" ' It was an A
goto | oop
DEBUG .S, "Character was B* ' It was a B
got o | oop
DEBUG CLS, "Character was C' ' It was a C
goto | oop

Remark:

Characters will be received via serial input (here from Debug Terminal) and checked for “A,”
“B,” and/or “C”. All other characters will be ignored. The resulting value (A=0,B =1, C =2)
controls the branch by a jump to the labels aaa, bbb or ccc.

44 Chapter 2: PBASIC

BUTTON BS2 BS2e BS2sx BS2p
BUTTON pi n#, downstate, delay, rate, bytevar, targetstate, | abel

Debounce button input, perform auto-repeat, and branch to address if button is in target state.
Button circuits may be active-low or active-high.

It means:
pin# Pin for key (0-15)
downstate State of the pressed key (0 or 1)
delay Delay time before Auto-Repeat Function starts. If Delay is 0, Button performs
no debounce or auto-repeat. If Delay is 255, Button performs debounce, but no auto-repeat.
rate Auto-Repeat Rate
bytevar Variable for Button command — must be cleared before first use.
targetstate State for branch (0 = not pressed; 1 = pressed)
label Specifies where to branch
Example:
key var byte ' Def i ni ng wor kspace
key = 0 "Initialization
| oop: BUTTON 1, 0, 9, 1, key, 0, wai t
| ow O
end
wait: TOGELE 0
pause 100
goto | oop
Remark:

Query a key connected to I/O Pin 1. The key is low-active, that means Lo at input P1 for
pressed key..

If the key is not pressed (targetstate = 0) then the program branches to label wait and toggled
I/O Pin 0 each 100 ms afterwards.

If the key is pressed then the program does not branch, PO is reset to low and ends the
program. Connecting a key to an I/O Pin is explained later.

Chapter 2: PBASIC 45

COUNT BS2 BS2e BS2sx BS2p
COUNT pi n#, period, wordvar
Count pulses on an I/O Pin during a defined time
It means:
pin# Pin as count input (0-15)
period Time for pulse counting (see Table)

wordvar Word variable for result

Timing BS2 BS2e BS2sx BS2p

Units in period 1ms 1ms 400 ps 287 ps
Period range 65536 ms 65536 ms 26214 ms 18809 ms
Min. pulsewidth 4,16 ps 4.16 ps 1.66 ps 1.20 us
Max. frequency 120 kHz 120 kHz 300 kHz 416,7 kHz

Example:
' { $STAWP BS2}

count i nput con 1 ' Count input is Pinl
counttinme con 10 ‘' For BS2 count time is 10ms
count val ue var word

| oop: GOUNT counti nput, countti ne, count val ue
DEBUG DEC? count val ue
got o | oop

Remark:

Counts pulses at /O Pin 1 For a time of 10 ms. The result will be saved in the variable
count val ue temporarily. The DEBUG command displays the result in the Debug Window of
StampW.

46 Chapter 2: PBASIC

DATA

BS2 BS2e BS2sx BS2p

{synbol } DATA {at,} datl {, dat2, dat3, ..}
Writes data to EEPROM during program download.

It means:
symbol Symbolic name for the address of first data element (optional)
at Address of first data element (optional}
dat# Data element (0-65535)
Example:
' { $STAVP BS2p}

addr var word
char var byte

Text1
Text 2
Spc
Res

Text 3
String.",

| oop:

exit:

end

DATA "0123456789"

DATA @10, "A', "B"

DATA @2,0,1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15

DATA @30, " " (16)

DATA @40, (16)

DATA 27

DATA @100, "Das is ein Beispiel fiir einen mit ASO| 0 abgeschl ossenen
0

addr = Text3
DEBUG CLS, HEX4 addr
SERQUT 16, 240, [CR

READ addr, char

IF char = 0 then exit
SERQUT 16, 240, [char]
addr = addr + 1

goto | oop

DEBUG CR, HEX4 addr

Remark:

This example shows different ways to save data in the EEPROM during program download.
DATA commands without the address operator @ save the data element to the next free
memory location. You can denote the address operator in different number formats (DEC,

Chapter 2: PBASIC 47

HEX). Repetitions can be input by a number in brackets (number). If there is no data element
then memory is reserved (here 16 bytes beginning at address $40), but not initialized.

Figure 17 shows the memory map for the example above. After the start of the program the
repeated READ fetches the bytes saved between addresses $100 and $142 from EEPROM
and SEROUT and then sends them serially to the Debug Window.

Memory Map - EEPROM 8% Full {D:data.bsp) - | Ellﬂ
Detailed EEPROM Map RAM Map
DI1|2|3|4IEIEI?ISISI"E‘IBIEIDIEIFI‘ . G412 11098 76543210
@3031 32333435353?3839000000000000_ DUTS: LI
101047 42 00 00 00 00 00 00 00 00 00 00 00 0000 00 o
0200007 02 03 04 05 06 OF 08 09 04 0B OC 00 OB OF REGD: I
REGT: (NI T T T TTT]
REG2 [T T TTTTTTTTTTTTT]
REG: CLITTTTTTTTTTTTTT]
REGH LT TTTTTTTTTTTTIT]
REGE: LT TTTTTTTTTTTTIT]
REGE: LT T T T T TTTTTTTTTT]
REGY: CLITTTTTTTTTTTTTIT]
REGE: CLTTTTTTTTTTTTTIT]
REGE: LT TTTTTTTTTTTTIT]
REGICCTIT T T T TTTTTTTTTT]
REGILCLIT T T T T T TTTTTTIT]
REGIZCTTTTTTTTTTTTITIT]
0ED Condensed
oFD EEPROM Map Source Code
10044 51 732063 7374 20 BB EI BE 20 42 65 BT 73 N ([data b
110|703 65 BEC 20 BE FC 72 20 B5 B3 BE B5 BE 20 BD EPROM Legend
120|163 74 20 41 53 43 43 43 2030 2061 B2 67 BG 73 B - Undef. Data
130|63 B8 BCEF 73 73 E6 BE BB BE 20 63 ¥4 72 B EE 1 -Def. Data
140|6¥ 2E 00 0000 00 00 00 00100 00 00 00 00 00 00 I - Program
150 1 - Unused
160 .
170 LI [~ Display ASCI

Figure 17 Memory Map for DATA Example

48 Chapter 2: PBASIC

DEBUG BS2 BS2e BS2sx BS2p
DEBUG datl {, dat2, ...}

Sends variables and messages to the Debug Window for display. Formatter control the
display format.

Example:

string var byte(4)

string(0) = "A"

string(l) = "B"

string(2) ="C'

val ue var word

val ue = -123

DEBUG CLS, " DEBUG BS2", CR ' DEBUG BS2

DEBUG REP "="\ 20, CR '

DEBUG STR stri ng, CR ' ABC

DEBUG STR string\ 2, CR ' AB

DEBUG DEC? val ue ‘val ue = 65413

DEBUG DEC val ue, CR ' 65413

DEBUG DEC3 val ue, CR '413

DEBUG SDEC val ue, CR '-123

DEBUG SDEGCS val ue, CR '-00123

DEBUG HEX4 val ue, CR ' FF85

DEBUG SHEX4 val ue, CR '-007B

DEBUG | HEX4 val ue, CR ' $FF85

DEBUG | SHEX4 val ue, CR ' -$007B

DEBUG BI N val ue, CR '1111111110000101

DEBUG SBI N val ue, CR '-1111011

DEBUG | BI N val ue, CR '94111111110000101

DEBUG | SBI N val ue, CR '-94111011
Remark:

The comments in each line show the result of the regarding formatter.

There are additional DEBUG options. CLS clears the Debug Window. HOME places the
cursor to the top left position. BELL sounds the PC speaker. BKSP places the cursor one
position back while TAB places the cursor to the next tabulator position.

Chapter 2: PBASIC 49

DTMFOUT BS2 BS2e BS2sx BS2p

DTMFQUT pi n#, {onti e, of fti ne, }[key, key, ..

Generates DTMF tones (dial tones of the phone)

-]

It means:
pin# I/O Pin for tone output
ontime Duration of the tone
offtime Duration of the pause after a tone
key Phone key (0 to 9 are numbers, 10 is * and 11 is # and 12 to 15 means A-D

(not available in most telephones)

BS2, BS2e BS2sx BS2p
Default OnTime 200 ms 80 ms 55 ms
Default OffTime 50 ms 50 ms 50 ms
Resolution 1ms 0.4 ms 0.265ms
Example:

nunber DATA “0815”

key var N B(4)
i var NB

for i=0 to 3

READ nunber +i , key(i)
‘DEBUG DEC key (i), CR
next

| oop: DIMFQUT 0, 250, 100, [key(0), key(1), key(2), key(3)]
pause 2000
got o | oop
Remark:

The first loop (FOR...NEXT) reads four keys from EEPROM while the second loop dials them.

For demonstration purposes the dialing is repeated permanently.

50 Chapter 2: PBASIC

The tone output must be filtered. Circuit examples are in the appendix, chapter 7.1.1.

Chapter 2: PBASIC 51

END BS2 BS2e BS2sx BS2p
END

End the program and placing the BASIC Stamp into low-power mode.

Example:
| ow 0
pause 2000
high 0
end
Remark:

End the program and place the BASIC Stamp into low-power mode - the 1/O pins stay active.
Every 2.3 seconds the I/O pins go for about 18 ms into tri-state (High-Z).

Only a hardware reset can wake-up the BASIC Stamp from that state after an END is
encountered.

52 Chapter 2: PBASIC

FOR|NEXT BS2BS2e BS2sx BS2p
FOR var = start TO end {STEP incr} | NEXT {var}

Creating a for ... next loop.

It means:
var Variable as loop counter
start Start value of the loop counter
end End value of the loop counter
incr Increment of the loop counter. Default is 1.
Example:
i dx var byte
DEBUG "Step Wp", CR
for idx = 0to 8 STEP 2
DEBUG ? i dx
next
DEBUG "Step Down", CR
for idx =7 to 2
DEBUG ? i dx
next
Remark:

The program runs the FOR...NEXT loop beginning with the start value till the end value. The
loop index will be incremented as long the index is between start and end value. The loop
index will be incremented if the start value is smaller then the end value. Otherwise, the loop
index would be decremented.

The default increment is 1. If you need another value you have to use STEP incr. The
increment value is always positive.

It is possible to nest FOR...NEXT loops in up to 16 levels.

Chapter 2: PBASIC 53

FREQOUT BS2 BS2e BS2sx BS2p
FREQQUT pi n#, period, freql, {freq2}

Generate one or two sine-wave tones for a specified period.

It means:
pin# I/O Pin for tone output
period Duration of tone
freql First frequency
freq2 Second frequency (optional)
BS2, BS2e BS2sx BS2p
Unit in period 1ms 0.4 ms 0.265 ms
Unit in freql,2 1Hz 25Hz 3.77Hz
Frequencyrange 0 - 32768 Hz 0-81917 Hz 0-123531 Hz
Example:
' { $STAWP BS2p}
nel ody DATA word 500, word 700, word 900, word 500
' frequency 1885 Hz, 2639 Hz, 3393 Hz, 1885 Hz
tone var word

tonel o var tone.|owbyte
t onehi var tone. hi ghbyte
i var nib

for i=0 to 3

READ 2*i + nel ody, tonel o
READ 2*i + mel ody + 1, tonehi
tone = tonehi * 256 + tonel o
DEBUG DEC? t one

FREQQUT 11, 500, tone

next

54 Chapter 2: PBASIC

Remark:

The tone output can be filtered. Circuit examples are in the appendix, chapter 7.1.1.

Chapter 2: PBASIC 55

GET BS2sx, BS2p, BS2sx, BS2p
CET |l ocation, variable

Read value from Scratch Pad RAM location and store in variable.

It means:
location Memory location in Scratch Pad RAM (BS2sx: 64; BS2p: 128)
variable Variable for value read
Example:
a var word ' general purpose vari abl es
b var byte
addr con 44 ' sratchpad address
CET addr, b "fetch the val ue
a = b+l ' perform sone cal cul ati ons

PUT scr-addr, a.byteO 'save the byte

Remark:

The highest memory location (BS2sx: 63; BS2p: 127) is Read-Only and contains the number
of the actual program slot.

56 Chapter 2: PBASIC

GOSUB | RETURN BS2 BS2e BS2sx BS2p
GOSUB | abel | RETURN

Call of a subroutine and return after processing.

It means:
label Entry point in the subroutine
Example:
i dx var nib
DEBUG .S, "Main...", CR
for idx =0to 3
gosub show ‘call subroutine show
DEBUG "Main...", CR
next
DEBUG "End. "
end
' subroutine for display
show: DEBUG "Subroutine: ", DEC ? idx
return
Remark:

At a subroutine call the address of the next instruction is saved as a return address. The
program branches to the label after GOSUB.

RETURN jumps back to return address, more specifically the next instruction encountered
after the GOSUB.

GOSUB can be nested in up to four levels. You can use 255 GOSUBSs in one program.

Chapter 2: PBASIC 57

GOTO BS2 BS2e BS2sx BS2p
QOTO | abel

Jump to a label in the program

It means:
label Target (where to go)
Example:
start: TOGAE 0
pause 1000
goto start
end ' program does not come to this point
Remark:

After the instruction pause 1000 the program jumps to the label start. In this case the
instruction end is never encountered and can be removed.

58 Chapter 2: PBASIC

HIGH BS2 BS2e BS2sx BS2p
H GH pi n#
Switches an 1/O Pin to output and set it to Hi
It means:
pin# I/O Pin for digital output
Example:
start: | ow O
pause 200
high 0
PAUSE 200
QOTO start
Remark:

I/O Pin 0 is set to high and low and then repeated.

Chapter 2: PBASIC 59

I2CIN BS2p
| 2CI N pin#, SID, Addr {\LowAddr}, [InputData]

Receive of data via I°C bus

It means:
pin# /O Pin for SDA line of the I°C bus
SID Address of the I°C device
Addr Address of a register in the I°C device
LowAddr Part of an address of a register in the 1°C device (optional)
InputData List of variables and modifiers for received data
BS2p
I/O Pin 0 8
I/O Pin 0: SDA I/O Pin 8: SDA
I/0O Pin 1: SCL I/0O Pin 9: SCL
Transmission rate about 81 kits/sec
Remark SDA and SCL need a Pull-Up resistor of 4,7 kQ
Example:
' {$STAVP BS2p}
ldx var word ' Index variable for address
Resul t var byte(16) ' 16-byte array for returned val ue
DEBUG OR, "Reading |2C EEPROM..", R
pause 1000

for 1dx = 0 to 2047 STEP 16 ' Read 2K EEPROM
'Read 16 bytes at once
124N 0, $AL+((1dx>>8)*2), Idx, [STR Result\16]

DEBUG "Addr: ", HEX4 ldx, "-", HEX4 |dx+15, " Value: ", STR Result, CR
next

Remark:

Reading an I°C EEPROM with I°C address $A1 in blocks of 16 bytes. DEBUG generates a
memory map in the Debug Window.

60 Chapter 2: PBASIC

[2COUT BS2p
| 2C0QUT pi n#, SID, Addr {\LowAddr}, [CQutputData]

Transmit data via I°C bus

It means:
pin# /O Pin for SDA line of the I°C bus
SID Address of the I°C device
Addr Address of a register in the I°C device
LowAddr Part of an address of a register in the 1°C device (optional)

OutputData List of variables and modifiers for sent data

BS2p
1/0 Pin 0 8
1/0 Pin 0: SDA 1/0 Pin 8: SDA
I/0 Pin 1: SCL 1/0 Pin 9: SCL
Transmission rate about 81 kbits/sec
Remark SDA and SCL need a Pull-Up resistor of 4.7 kQ
Example:
" { $STAMP BS2p}
ldx var word "I ndex variable for address

Resul t var byte(16) '16-byte array for returned val ue

DEBUG CR, "Witing 12C EEPROM .. ", CR
pause 1000
for Idx = 0 to 2047 STEP 16 ' Read 2K EEPROM

'"Wite 16 bytes at once
1 2CQUT 0, $A0+((1dx>>8)*2), Idx, [REP |dx>>4\16]
pause 5

DEBUG "Addr: ", HEX4 ldx, "-", HEX4 1dx+15, " Value: ", DEC3 |dx>>4 & $FF, CR
next

Chapter 2: PBASIC 61

Remark:

Writing an 1°C EEPROM with I°C address $AO in blocks of 16 bytes. DEBUG generates a
protocol in the Debug Window.

62 Chapter 2: PBASIC

IF | THEN BS2 BS2e BS2sx BS2p
| F variabl e ?? value {AND/ OR variable ?? value ...}

THEN label Conditional branch

It means:
variable Variable for compare
?? Compare operation (=, <>, >, <, >=, <=, AND, OR NOT, AND, OR, XOR)
value Value for compare
label Target for branch
Example:
start: i nput 8 "I/OPin 8is input
agai n: if in8 =0 then work 'wait for I/OPin 8 = Lo
got o agai n
wor k: toggle 11 ' Reacti on
pause 1000
goto start
Remark:

If the result of the compare operation is valid then the program branches to the label. If the
result is not valid the next instruction will be executed.

With the different compare operators building logic is very easy with the BASIC Stamp.

The compare operation uses integer numbers without sign (16 Bit).

Chapter 2: PBASIC 63

INPUT BS2 BS2e BS2sx BS2p
| NPUT pi n#
Switches an 1/O Pin to input.
It means:
pin# I/O Pin as a digital input
Example:
| ow 8 'Qutput Lo at Pin8
i nput 8 ‘Change |/ O Pin8 to input
debug ? in8 'Read and display I/O Pin8
reverse 8 ' Change |/O Pin8 to Qutput
debug ? in8 ' Read and di splay Pin8
Remark:

I/O Pin 0 is switched from output to input.

64 Chapter 2: PBASIC

IOTERM BS2p-40
| OTERM bl ock#

Switching the 1/O blocks of BS2p-40.

It means:
block# I/O block number (0=MAINIO; 1=AUXIO)
Example:
high 0 ' Output0 (Pin5) Hi
ioterm1 ' Switch to Auxiliary I/O Pins
low 0 ‘ OutputO (Pin21) Lo
iotermO ‘ Switch to Main I/O Pins
low O ' Output0 (Pin5) Lo
ioterm1 ' Switch to Auxiliary I/O Pins
high 0 ‘ OutputO (Pin21) Hi

Remark:

Use the IOTERM command for switching between the BS2p’s I/O blocks with a single
parameter (O=MAINIO; 1=AUXIO).

This command only applies to the BS2p-40.

souTt
SIN
ATN
vss
PO
P1
P2
P3
P4
P5
P6
P7
P8
PO
P10
P11
P12
P13
P14
P15

=

‘ﬁ m [vIN
40 =

MAIN 1/O
. -
AUX 11O
— 5

El & B BT BT & GG B ETE T T T T I T T T T

BS2p40-IC

MAINIO = IOTERM 0
PO — P15 active

AUXIO = I0TERM 1
X0 — X15 active

Chapter 2: PBASIC 65

66 Chapter 2: PBASIC

LCDCMD BS2p
LCDCVD pi n#, comand

Sends a command to an LCD.

It means:
pin# I/O Pin for LCD Enable, specifies the other LCD 1/O Pins
command LCD Command
Pin# Oorl 8or9

LCD Enable (E) Oorl 8or9

LCD Read/Write (R/W) 2 10

LCD Register Select (RS) 3 11

LCD Data Bus (DB4-DB7) 4-7 12-15

Chapter 2: PBASIC 67

I ni tLCD

Command Dec. Explanation
No Operation 0
Clear Display 1 Clears the display
Home Display 2 Moves the cursor to home position
Auto-Decrement Cursor 4 No move of the display content
Auto-Decrement Cursor 5 MO\.’?S the (j|splay content one
position to right
Auto-Increment Cursor 6 No move of the display content
Auto-Increment Cursor 7 MO\.’?S the display content one
position to left
Display Off 8 Switches the display off
Display On 12 Switches the display on
Blinking Cursor 13 Blinking cursor
Underline Cursor 14 Switches the cursor to underscore
Cursor Left 16 Moves the cursor to left
Cursor Right 20 Moves the cursor to right
Scroll Left 24 Moves the display content to left
Scroll Right 28 Moves the display content to right
4-Bit Mode 32 1 Line, Font 5x8
4-Bit Mode 36 1 Line, Font 5x10
4-Bit Mode 40 2 Lines, Font 5x8
4-Bit Mode 44 2 Lines, Font 5x10
Wake Up 48 Wake up of the display
Character RAM Address 64 +addr Address a location in Character RAM
Display RAM Address 128 + addr Address a location in Display RAM
Example:
pause 1000 ' Wit for power-up of LCD
| cdermd 1, 48 ' Send wakeup command
pause 10 ' Pause needed due to the LCD specs
lcdemd 1, 48
pause 1 ' Pause needed due to the LCD specs
| cdemd 1, 48
pause 1 ' Pause needed due to the LCD specs
lcdemd 1, 32 ' Set data bus to 4-bit node
I cdemd 1, 40 ' Set to 2-line node with 5x8 font
| cdemd 1, 8 ' Turn display off
lcdemd 1, 12 ' Turn display on without cursor

lcdend 1, 6

' Set to auto-increnent cursor

68 Chapter 2: PBASIC

lcdemd 1, 1 ' Qear the display

Remark:

The LCDCMD command sends control commands to a directly-connected LCD with Hitachi's
LCD-Controller HD44780A.

These control commands support special modes of the LCD, as initializing the LCD, cursor
movement, font setup etc.

Normally, you should initialize the LCD after power-on respectively after reset.

Chapter 3.3 explains working with direct-connected LCD in detail.

Chapter 2: PBASIC 69

LCDIN BS2p
LCDI N pi n#, command, [inputdata]
Reading data from an LCD.

It means:
pin# I/O Pin for LCD Enable, specifies the other LCD 1/O Pins
command LCD Command (see LCDCMD)
inputdata List of variables and formatters
Example:
' { $STAVP BS2p}
char var byte(16) ' Array for 16 characters read fromLCD
gosub | cdinit ‘" Init the LCD (not |isted here)
gosub ReadlLCDScr een
end
ReadLCDScr een:

debug "LCD Now Says: '

lcdin 1,128,[str char\16] 'Read 16 char starting at 0
debug str char\ 16, (R CR

return

Remark:

The command | cdin 1,128, [str char\16] reads 16 characters beginning at location
0 of display RAM (home position) and saves them in the array char . For an LCD n x 16 this
would be the first lines completely.

70 Chapter 2: PBASIC

LCDOUT BS2p
LCDQUT pi n#, command, [out putdat a]
Writing data to an LCD .

It means:
pin# I/O Pin for LCD Enable, specifies the other LCD 1/O Pins
command LCD Command (see LCDCMD)
inputdata List of variables and formatters

Example:

' { $STAW BS2p}

gosub | cdinit ' Init the LCD (not |isted here)
| cdout 1, 1, [“Hello World”]

| cdout 1, 192, [rep “="\11]

end

Remark:

The command | cdout 1,1, [,Hello World"“] sends the string ,Hello World“ to the LCD
and displays beginning at location 1. The command | cdout, 1,192,[rep ,="\11]
underlines this string afterwards.

Chapter 2: PBASIC 71

LOOKDOWN BS2BS2e BS2sx BS2p
LOOXDOM val ue, ??[val ueO, val uel, . . .],index

Compares a value with some compare values. The following compare operations are
possible: =, <>, >, <, <=, >=,

It means:
value Value for compare
?? Compare operator (default is =)
valueO first compare value
valuel seconds compare value
index Index of the compare
Example:

val ue var byte
idx var byte
i var nib

val ue = 64

for i=0 to 4

idx = 99 "setup for idx if no match

| ookdown val ue, [65, 66, 67], idx
debug cr, dec2 value, rep 32\2, dec2 idx
if idx =99 then nonatch
mi: value = value + 1
next
end

nomat ch

debug * No match found."
goto i

Remark:

The variable val ue will be compared with the values 65, 66 and 67. The variable i dx points
to that position in the compare list for which the result of the compare operation is valid.

If the compare value is not in the list then the variable i dx does not change. You can detect
such a situation by setup variable i dx before the compare.

72 Chapter 2: PBASIC

LOOKUP BS2 BS2e BS2sx BS2p
LOOXUP i ndex, [val ue0O, val uel, ...], var

Access to a list of values by an index.

It means:
index Index to a list of values
valueO First value (Index =0)
valuel Second value (Index = 1)
var Result

Example:
idx var byte
val ue var byte
i var byte

for i=0 to 8

val ue = 255
| ookup i,[1,2,4,8, 16, 32, 64, 128], val ue
debug cr, dec i, rep 32\2, dec3 val ue
if value = 255 then noval ue

m: next
end

noval ue
debug " Index out of list."
goto ni

Remark:
The index points into the list of values and saves the value in variable val ue.
If the index exceeds the highest location number in the list, the variable is unaffected.

Setting up the variable var before compare helps detect this situation..

Chapter 2: PBASIC 73

LOW BS2 BS2e BS2sx BS2p
LOW pi n#
Initialization of an 1/0 Pin as output and set to low.
It means:
pin# I/O Pin for digital output
Example:
start: high 0
pause 200
low O
pause 200
goto start
Remark:

I/O Pin 0 is switched to high and low repetitively.

74 Chapter 2: PBASIC

MAINIO BS2p-40
MAI NI O
The commands AUXIO, MAINIO and IOTERM control the access to the BS2p-40’s I/O Pins.

The command MAINIO switches the BS2p-40 I/O operations from AUXIO (X0-X15) to MAINIO
(PO-P15).

After a reset MAINIO is set by default.
For BS2p-24 the commands AUXIO, MAINIO and IOTERM have no effect.

Example:

' { $STAW BS2p}

high 0 ' OutputO (Pin5) Hi

auxi o ‘' Switch to Auxiliary I/O Pins

| ow O ' Qutput0 (Pin21) Lo

nai ni o ‘ Switch to Main I/O Pins

| ow O ' Output0 (Pin5) Lo

auxi o ' Switch to Auxiliary I/ O Pins

high 0 ' Qutput0 (Pin21) Hi

end

Remark:

PO (Pin 5) is set to high and the I/O is switched to AUXIO afterwards. Low O resets X0 (Pin
21).

After switching back to MAINIO low 0 resets PO (Pin 5).
After switching to AUXIO again high 0 sets X0 (Pin 21) to high.

Chapter 2: PBASIC 75

NAP BS2 BS2e BS2sx BS2p
NAP peri od

Switches for a short period into the Sleep-Mode (Low-Power Mode) and reduces for this time
the current consumption.

It means:

Period Duration of the Nap Period

18 ms
36 ms
72 ms
144 ms
288 ms
576 ms
1.152 s
2.304 s

~NoOo o h~WNEO

Current consumption during BS2 BS2e BS2sx BS2p

RUN 8 mA 25 mA 6 mA 40 mA
SLEEP 40 pA 60 pA 60 puA 60 pA

Example:

| ong con 7

| oop: nap | ong 'Nap about 2.3 sec
goto | oop

Remark:

Switches for a short time to the Sleep-Mode. At the end of the Nap period all I/0O Pins go for
about 18 ms to Tri-State (High-Z) and program executes the next command afterwards.

76 Chapter 2: PBASIC

OUTPUT BS2 BS2e BS2sx BS2p
QUTPUT pi n#
Switches an 1/O Pin to output.
It means:
pin# I/O Pin as a digital output
Example:
| ow 8 'Qutput Lo at Pin8
i nput 8 ‘Change |/ O Pin8 to input
debug ? in8 'Read and display 1/0O Pin8
output 8 ' Change |/ O Pin8 to output
debug ? in8 'Read and di splay Pin8
Remark:

I/O Pin 8 is set to Lo before switching to input. Due to the Pull-Up resistor on the Activity
Board the Debug command signalizes high after reading this input.

After switching back to output (out put 8) and a repeated query of this I/O Pins Debug
signalizes low (I ow 8) .

Chapter 2: PBASIC 77

OWIN BS2p
ON N pi n#, node, [inputdata]

Receives data from a 1-Wire Device.

It means:
pin# I/O Pin as a digital input
mode Data transfer mode (0-15)
inputdata List of variables and formatters for received data.

The parameter Mode controls the position of the reset impulse, byte- or bit-mode and data
rate. The next table has some combinations. The choice of the correct mode depends of the
type of 1-Wire device connected to the BS2p.

Mode Meaning
0 No Reset, Byte Mode, slow data transfer
1 Reset before data, Byte Mode, slow data transfer
2 Reset behind data, Byte Mode, slow data transfer
3 Reset before and behind data, Byte Mode, slow data transfer
4 No Reset, Bit Mode, slow data transfer
5 Reset before data, Bit Mode, slow data transfer
8 No reset, Byte Mode, high data transfer
9 Reset before data, Byte Mode, high data transfer

Example:
' { $STAWP BS2p} ' speci fies a BS2p
ONpi n con 15 "1-wire device pin
ONFERSt con %9001 'Front - End Reset, Byte Mde
ONBERSt con %9010 ' Back- End reset, Byte Mde
ONBi t Mode con %9100 "No Reset, Bit Mde
ReadROM con $33 ' Read ROM Command

Sear chRCM con $FO ' Search ROM Conmand

78 Chapter 2: PBASIC

ROVDat a var byt e(8)
devcheck var nib

owout OWNi n, ONFERst, [SearchROV
owin OWin, OMNBitMde, [devcheck.bitl, devcheck. bitO]

owout ONi n, ONERst, [ReadROM
owin ONiIn, OABERst, [str ROMWData\ 8]

Remark:
The 1-Wire Bus is connected to 1/0 P15.
In Bit Mode a query for a connected 1-Wire device occurs.

In Byte Mode eight data bytes followed by a reset will be read from the 1-Wire bus and stored
in ROMDATA.

Explanations of data transfer via 1-Wire bus follow in detail in chapter 3.2.

Chapter 2: PBASIC 79

OowWouT BS2p
ONOUT pi n#, node, [outputdata]

Send data to a 1-Wire device

It means:
pin# I/O Pin as digital output
mode Data transfer mode (0-15)
outputdata List of variables and formatters for data to send

The parameter Mode controls the position of the reset impulse, byte- or bit-mode and data
rate. The next table has some combinations. The choice of the correct mode depends of the
type of 1-Wire device connected.

Mode Meaning
0 No Reset, Byte Mode, slow data transfer
1 Reset before data, Byte Mode, slow data transfer
2 Reset behind data, Byte Mode, slow data transfer
3 Reset before and behind data, Byte Mode, slow data transfer
4 No Reset, Bit Mode, slow data transfer
5 Reset before data, Bit Mode, slow data transfer
8 No reset, Byte Mode, high data transfer
9 Reset before data, Byte Mode, high data transfer

Example:
' { $STAVP BS2p} ' speci fies a BS2p
ONpi n con 15 "1l-wire device pin
ONFERSt con %9001 'Front - End Reset, Byte Mde
OMBi t Mode con %9100 ‘'No Reset, Bit Mde
Sear chROM con $FO ' Search ROM Command

devcheck var nib

80 Chapter 2: PBASIC

owout ONi n, ONFERst, [SearchROV
owin ONiIn, OABitMde, [devcheck.bitl, devcheck. bitO0]

Remark:
1-Wire Bus is connected to I/O P15.
The command SearchROM is sent in Byte Mode to the connected 1-Wire device.

Explanations to data transfer via 1-Wire bus follow in detail in chapter 3.2.

Chapter 2: PBASIC 81

PAUSE BS2 BS2e BS2sx BS2p
PAUSE peri od
Stops the program for a certain time in milliseconds.
It means:
period Duration of break (period = 0...65535)
Example:
start: | ow 8
pause 20 ' Pause for 20 ns
high 8
pause 1000 ' Pause for 1 s
goto start
Remark:

The accuracy of time depends on the accuracy of the oscillator frequency only.

82 Chapter 2: PBASIC

POLLIN POLLMODE POLLOUT POLLRUN POLLWAIT BS2p
POLLI N pi n#, state

POLLMODE node

POLLQUT pi n#, state

POLLRUN sl ot #

POLLWAI T period

The polling commands allow the BS2p to react to certain states on it’s digital inputs.

It means:
pin# I/O Pin as digital input or output
slot# Specifies the program slot for the polling event program (0 — 7)
mode Data transfer mode (0-15)
state State of the I/O Pin for polling event
period Specifies the duration of the Low-Power state (0-8). The time calculates to

2period * 18 ms (for period = 0...7). For period = 8 the BS2p does not switch to low-power

state and has therefore a faster response.

Remark:

At the end of each PBASIC instruction and before the next the BS2p interpreter checks the
given inputs (pin#) for defined levels (state). These periodic queries (polling) seem to happen
in the background. This polling is not a hardware interrupt. The polling event is when a pre-
defined state occurs.

The command POLLWAIT is a little bit different to the other polling commands. POLLWAIT
switches the BS2p to stop until the polling event occurs. The parameter period works quite
similar to the NAP command.

If the time defined by period is finished then a new polling of the defined inputs occurs. If there
is no polling event then the BS2p switches to Stop and waits the time defined by period. If
when the polling event occurs the program will execute the next PBASIC instruction.

The polling commands are a very complex enhancement of BASIC Stamp functionality.
Therefore, the polling is explained in it's own chapter with some examples. Chapter 2.2.4
describes the required details.

Chapter 2: PBASIC 83

PULSIN BS2 BS2e BS2sx BS2p
PULSI N pi n#, state, var

Measure of a pulse length

It means:
pin# I/O Pin as digital input
state Specifies the phase to be measured (0 = low; 1 = high)
var Result of measurement (Variable as byte or word)
BS2 BS2e BS2sx BS2p
Resolution 2 us 2us 0.8 us 0.75 us

Max. Pulse length 131.07 ms 131.07 ms 52.428 ms 49.125 ms

Example:
pul sinp con 8 "Pul se input 1/0O Pin8
state con O "Trigger with 1-0
value var word
| oop: pul sin pul sinp, state, val ue
debug dec ? val ue
goto | oop
Remark:

The stated 1/O Pin waits for the specified edge of the pulse (the high-low transition in this
example) and starts time measurement until the end of the pulse (the low-high transition).

Have a look at the table for the maximum pulse length. If the pulse is longer than the
maximum pulse length then a time-out with the result 0 occurs.

The maximum pulse length determines the time window where the pulses are expected. If no
trigger arrives during this time the result will be 0 again.

84 Chapter 2: PBASIC

PULSOUT BS2 BS2e BS2sx BS2p
PULSQUT pi n#, period

Generates a pulse by inverting an 1/0O Pin for a defined time.

It means:
pin# I/O Pin as digital output
period Duration of pulse (period = 0...65535)
BS2 BS2e BS2sx BS2p
Resolution 2 us 2 us 0,8 us 1,18 us

Max. Pulse length 131.07 ms 131.07 ms 52.428 ms 55.479 ms

Example:
' { $STAWP BS2p}
pul soutp con 8 " Pul se output 1/0O Pin8
tine con 42373 'Duration 42373*1, 18 ps = 50 ms
hi gh pul sout p ' Pul se=H
| oop: pul sout pul soutp, tine ' Pul se=Lo for 50 ns
pause 1000
got o | oop
Remark:

The state of the concerning 1/O Pin is inverted for a defined time. The initial state defines the
polarity of the pulse.

In the example the I/O Pin is set high. The endless loop generates 50 ms low pulses every
second.

Chapter 2: PBASIC 85

PUT BS2e BS2sx BS2p
PUT | ocation, value
Writes a byte into Scratch Pad RAM

It means:
location Location in Scratch Pad RAM
value Byte to save in Scratch Pad RAM
Example:
' { $STAWP BS2p}
scraddr con 123 ' sratchpad pad address
pattern con $abcd "bit pattern
a var word ' general purpose vari abl es
b var byte
a = pattern
debug hex2 scraddr, ":", hex4 a, cr
put scraddr, a.byteO 'save the byte
get scraddr, b "fetch the val ue
debug hex2 scraddr, ":", hex4 b, cr
Remark:

Saves a byte in Scratch Pad RAM. The BS2p has 128 Byte Scratch Pad RAM, while BS2e
respectively BS2sx have only 64 Byte.

In the eBS2e and BS2sx location 63 contains the number of the actual program slot. In BS2p
location 127 contains the number of the actual program slot (low nibble) and the number of the
actual Read/Write-Slot (high nibble). These locations of the Scratch Pad RAMs are read-only.

86 Chapter 2: PBASIC

PWM BS2 BS2e BS2sx BS2p
PWM pi n#, duty, cycles
Output of a pulsewidth-modulated (PWM) signal for a defined time

It means:
pin# I/O Pin as digital output
duty Specifies the duty resp. the resulting analog voltage (0 - 255 =0 - 5V)
cycles Number of output periods (0-255); Period see table
BS2 BS2e BS2sx BS2p
Period 1ms 1ms 0.4 ms 0.625 ms
Example:
' { $STAMP BS2p}
tine con 5000 "Waiting tine
| oop: pwn 8, 51, 255 ‘U= 1V
pause tine "Wait 5 sec.
pwn 8, 102, 255 'U= 2V
pause time "Wait 5 sec.
pwn 8, 153, 255 'U= 3V
pause tine "Wait 5 sec.
pwm 8, 204, 255 'U= 4V
pause time "Wait 5 sec.
got o | oop ' Repeat endl ess
Remark:

The 1/0O Pin is switched to an output and generates a defined number of pulses with a defined
duty. In the example we generate a pulses of 255 each time. At the end of the pulse package
(255 * 0.625 ms = 159 ms for BS2p) the 1/O Pin switches to an input again.

When using PWM to generate an analog voltage you need to use a simple R/C filter for
smoothing.

Chapter 2: PBASIC 87

_ The 10 kOhm resistor and 1 uF capacitor are
10k appropriate in this circuit though you can measure

- ., .
WO Pin Analog Out > the voltages across the capacitor.

G;,I;D You can calculate the charging time of the
capacitor by the formula T = 4*R*C. After four
periods the capacitor is completely loaded.

The PWM signal of the BASIC Stamp is utilized in a non-common way. Normally a fixed
period is separated with a low and high phase relating to their duty cycle. A duty of 0.5 means
the same duration is used for the low and the high phase in that period. For example, in a
period of 1 ms the low and the high are 0.5 ms both for a duty of 0.5.

BASIC Stamps generate short high/low pulses that number in a period which represents a
certain duty cycle.

88 Chapter 2: PBASIC

RANDOM BS2 BS2e BS2sx BS2p
RANDOM wor dvar

Generates a pseudo-random number

It means:
wordvar Word variable for start value and result
Example:
val ue var word '"Word vari abl e for random
i var nib
val ue = 999 "Initialize value to 999
for i=0 to 15
random val ue
debug dec2 i, ":", dec5 val ue, cr
next
Remark:

Generates pseudo-random numbers depending from an initial value (here 999).

The RANDOM command uses the variable value as a start value and saves the result in this
variable after operation as a start value for a next call of RANDOM.

Chapter 2: PBASIC 89

RCTIME BS2 BS2e BS2sx BS2p
RCTI ME pi n#, state, wordvar
Measures the charge/discharge time for a RC combination
It means:
pin# I/O Pin as digital input
state Input state (0 or 1)
var Result of measurement (variable as byte or word)
BS2e BS2sx BS2p
Resolution 2 us 2 us 0,8 us 0,9 s

resul t

| oop:

Max. Pulse length 131.07 ms 131.07 ms 52.428 ms 58.982 ms

var word

high 7

pause 1

rctime 7, 1, result
debug ? result
goto | oop

Example:

Remark:

To measure the unknown value of a resistor and convert it
to a digital value use the circuitry connected to an I/O Pin
in the left schematic.

In the program example 1/O pin 7 is set to Hi for a time of 1
ms disloading the capacity.

The command r ct i me switches I/O pin 7 to input and the
resistor (with unknown value) loads the capacity. If the
voltage at I/0O pin 7 reaches a value of about 1.5 V, then
the high phase and internal counting is finished. The
counting result is saved in the variable. This count

90 Chapter 2: PBASIC

multiplied with the resolution is the load-time for the RC combination.

Chapter 2: PBASIC 91

READ BS2 BS2e BS2sx BS2p
READ | ocati on, vari abl e

Reads a byte from EEPROM

It means:
location Location in EEPROM (loc = 0 - 2047)
variable Variable to save the read byte
Example:
' { $STAVP BS2p}
maxmem con 2048
dta var byte
addr var word
addr = maxmem
debug cls, "Check EEPROM ..", cr

count - t okens
addr = addr - 1
read addr, dta 'read data byte from EEPROM
debug hex3 addr, ":", hex2 dta, cr
if dta <> 0 then count -t okens
debug dec maxmem - addr -1
debug " token bytes are stored in EEPROM", cr

Remark:

In the program example all tokens are counted and the result is displayed with DEBUG. Check

the result with the help of the memory map.

92 Chapter 2: PBASIC

RETURN BS2 BS2e BS2sx BS2p
RETURN

Return from a subroutine called by GOSUB

Example:

i dx var nib

debug cls, "Main...", cr

for idx =0to 3

gosub show 'call subroutine show
debug "Main...", cr

next

debug "End."

end

' subroutine for display

show. debug "Subroutine: ", dec ? idx
return

Remark:
A RETURN without a GOSUB jumps to the first instruction in program.

Chapter 2: PBASIC 93

REVERSE BS2 BS2e BS2sx BS2p
REVERSE pi n#

Switches from output to input and vice versa

It means:
pin# I/O pin as input becomes output
Example:
| ow 8 "Qutput Lo at pin8
i nput 8 ' Change pi n8 to input
debug dec ? in8 'Read and di spl ay pin8
reverse 8 ' Change pin8 to Qutput

debug dec ? in8 ' Read and di spl ay pi n8

Remark:
I/O pin 8 is switched from output to input and with REVERSE back to output.

94 Chapter 2: PBASIC

RUN BS2e BS2sx BS2p
RUN pr ogr an#
Switch to another program slot
It means:
program# Number pf program slot (0 — 7)

Example:

run 1 ;redirect program execution to page 1

Remark:

The program execution is redirected to program slot 1. The program always starts always with
the first instruction in a program slot.

Chapter 2.2.2 contains a detailed description of the command using different program slots.

Chapter 2: PBASIC 95

SERIN BS2 BS2e BS2sx BS2p
SERI N r pi n# {\fpin#}, baudnode, {plabel,} {tineout,tlabel,} [inputdata]

Receives asynchronous serial data (in accordance with RS-232)

It means:
rpin# I/O pin for serial input (0-15 = I/O pin, 16 = SIN)
fpin# I/O pin for handshake (Flow Control)
baudmode Parameter for baud rate control
plabel Label to jump to in case of a Parity Errors
timeout Waiting time for receiving a character (Timeout)
tlabel Label in case of a timeout
inputdata List of variables and formatters for serial received data
BS2, BS2e BS2sx BS2p
Unit in timeout 1ms 0.4 ms 0.4 ms
Baudrate 243 —50k Baud 680 — 115k Baud 680 — 115k Baud
Max Baudiale 192kBaud 19.2kBaud 19.2 kBaud
/O pins 0-15 0-15 (()I\/I_All\ISIO, AUXIO)
Example:
' { $STAWP BS2p}
RxD con 0 '"RxD via |/0O pin0
Baud con 16624 ' N9600 for BS2p

recchar var byte

96 Chapter 2: PBASIC

| oop:
serin RxD, baud, 500, tineout,[recchar] 'Ti neout=500ns
debug "Rec. char.: ", dec recchar, cr
got o | oop
ti meout :
debug "Ti meout ", CR
got o | oop

Remark:

SERIN waits to receive serial data, filters it and converts it for debug display. SERIN is very
complex. The example above is quite basic.

Compared to Debug, formatters control the characteristics of serial output on P16. For the
SERIN command additional formatter are available:

Special Formatter Action

Input a string with length L and saving in an array. If
an end character E defined, then the receiving
stops with this character and the array is filled with
0.

Waiting for a byte sequence (max. 6 characters)
specified by value

Waiting for a byte sequence equal to a string in an
WAITSTR ByteArray {\L} array. L is the length of the string. Without L the
string must be 0-terminated.

SKIP # Ignores the number # of characters.

STR ByteArray \L {\E}

WAIT (Value)

All types of BS2 have a receiver behind their SIN pin (Rpin=16). The SIN pin is connected via
DB9 connector with the transmit line TxD of the PC’s COM port.

Program, download and serial communication during run time use this connection. The
interface at the BS2 Carrier Board is assembled only for program downloading.

All types of BS2 can receive serial data on each 1/O pin (Rpin= 0 — 15). For level conversion a
resistor of 22 kQ connected between the transmit line TxD and the concerning 1/O pin is
sufficient.

Chapter 2: PBASIC 97

Asynchronous serial communication needs precise timing. Transmitter and receiver must have
the same timing. The transmission rate (baud rate) is measured in bits per second (bps) or
Baud.

The parameter baudmode specifies the time for a received bit, the number of data and parity
bits and the polarity.

The parameter baudmode is defined as follows:

1,000,000

, e:) -
BS2, BS2 INT(b r)—20
1. Bittime (Bit 12-0) P 'ggg
BS2sx, BS2p: INT(—————)-20
baudrate
> Data and 8-bit/no parity: 0
" parity bit (Bit13) 7-bit/even parity: 8192
. . True (noninverted): 0
3. Polarity (Bit14) Inverted: 16384

For the most commonly used baud rates see the baudmode parameter listed in the Appendix
after Chapter 7.2.

An additional 1/0O pin handles flow control. If you coded

' { $STAWP BS2p}

serdata var byte
serin 1\0, 240, [dec serdata]

then 1/O pin 1 serves as input for serial data (Rpin) and I/O pin O serves as control output
(Fpin). The parameters for serial communication of a BS2p are in accordance with Chapter 7.2
(9600 Baud for eight data bits, 1 stop bit, no parity and normal polarity - no inversion).

This control output (Fpin) signalizes the transmitter with a low level that it is ready for receiving
serial data. After receiving all expected characters Fpin switches back to high. This signalizes
to the transmitter that the receiver is not ready for receiving additional characters.

For inverted data transmission the polarity of the flow control line also changes.

Chapter 2.2.1 contains some additional program examples with the SERIN command.

98 Chapter 2: PBASIC

SEROUT BS2 BS2e BS2sx BS2p
SERQUT t pi n#\ f pi n#, baudnode, {pace,} {tineout,tlabel,} [outputdata]

Transmits asynchronous serial data (in accordance with RS-232)

It means:
tpin# I/O pin for serial output (0-15 = I/O pin, 16 = SOUT)
fpin# I/O pin for hand shake (Flow Control, 0-15 = I/O pin)
baudmode Parameter for baud rate control
pace Distance of transmitted characters (ms) if no timeout is defined
timeout Waiting time for ready to receive by Fpin (timeout)
tlabel Label in case of a timeout
outputdata List of variables and formatters for serial transmitted data
Example:
' { $STAWP BS2p}
TxD con 16 'TxD at SOQUT
baud con 16624 ' N2400
pace con 200 ' Pace = 200 ns
| oop: serout TxD, baud, pace,["Hel |l o worl d", cr]
goto | oop
Remark:

The string Hello world is sent via SOUT. Between the characters is a transmission delay of
200 ms.

For the baudmode calculation the conditions described in SERIN apply. For the most used
baud rates you find the baudmode parameter listed in the appendix Chapter 7.2.

The output driver can also be switched to open drain/source. In this case you must add 32768
to the baudmode value (Bit15 = 1).

As for DEBUG, previously listed formatter controls change the output format. For the SEROUT
command additional formatter are available:

Chapter 2: PBASIC 99

Special Formatter Action

s Output of a number in format symbol = x plus CR.

' Can be combined with BIN or HEX.

ASC 2 Output of an ASCII character in format symbol = x
plus CR.
Sends a string saved in an array. L is the length of

STR ByteArray {\L} that string. If L is not defined then the string must be
O-terminated.

REP Byte \L Sends a string of character byte with the length L.

Chapter 2.2.1 contains some resuming program examples to the SEROUT command.

100 Chapter 2: PBASIC

SHIFTIN BS2 BS2e BS2sx BS2p
SHI FTI N dpi n#, cpi n#, node, [var{\bits},...]

Receives synchronous serial data

It means:
dpin# I/O pin for serial input (0—15 = 1/O pin)
cpin# I/O pin as clock output (0—15 = I/O pin)
mode Mode of operation (0-3)
var Variable to save received data
bits Number of bits. Default is eight.
Example:
ADr es var byte 'A-to-Dresult = one byte
Cs con O "Chip select is PO
ADat a con 1 " ADC data output is P1
CLK con 2 '"dock is P2
hi gh CS 'Desel ect ADC to start.
agai n: | ow CS "Activate the ADO0831.
shiftin AData, CLK, MSBPCST, [ADr es\ 9]
hi gh CS ' Deact i vat e ADC0831.
debug ? ADres ' Show us the result.
pause 1000 "Vait a second.
goto again ‘Do it again.
Remark:

The program example shows the serial data input of nine data bits in MSBPOST Mode. The
mode must be selected in accordance with the connected device’s shift register.

The following table describes the different modes:

Chapter 2: PBASIC 101

Symbol Word Meaning
MSBPRE 0 First bit is MSB, sample bits before clock pulse
LSBPRE 1 First bit is LSB, sample bits before clock pulse
MSBPOST 2 First bit is MSB, sample bits after clock pulse
LSBPOST 3 First bit is LSB, sample bits after clock pulse

The synchronous serial data exchange reaches high transmission rates. The next table shows
the timing:

BS2 BS2e BS2sx BS2p

Timing Ty/T, 14 us/46 ps 5.6 ps/18 us
Transmission rate ~ 16 kbits/s ~ 42 kbits/s

102 Chapter 2: PBASIC

SHIFTOUT BS2 BS2e BS2sx BS2p
SHI FTQUT dpi n#, cpi n#, node, [var{\bits},...]

Sends synchronous serial data

It means:
dpin# I/O pin for serial output (0-15 = I/O pin)
cpin# I/O pin as clock output (0—15 = I/O pin)
mode Mode of operation (0-3)
var Variable with data to sent
bits Number of bits. Default is eight.
Example:
DataP con 0 'Data pin to 74HC595
Qock con 1 "Shift clock to '595
Latch con 2 ' Moves data from shift
'regiser to output |atch.
counter var byte "Counter for dermo program

agai n: shi ftout Dat aP, d ock, MSBFI RST, [count er]

pul sout Latch, 1 'Transfer to outputs
pause 50 'Wait 50ns
counter = counter+l 'lIncrenent counter.
goto Again "Do it again.
Remark:

The SHIFTOUT command sends the content of the variable count er to a shift register. The
circuit used in this example (a 74HC595) needs the MSBFIRST mode.

Chapter 2: PBASIC 103

SLEEP BS2 BS2e BS2sx BS2p
SLEEP seconds

Switches the BS2 for the given time to Sleep Mode

It means:
seconds Duration of the Sleep Mode in seconds (0...65535)
Example:
time con 5 '"sleep tine about 5 s
high 8
sleep time
| ow 8
end
Remark:

Switches into Low-Power Mode (Sleep Mode). The I/O pins stay active. Every 2.3 s the
outputs go for about 18 ms to tri-state.

BS2 BS2e BS2sx BS2p

Current consumption
during run time

Current consumption
during sleep 40 pA 60 pA 60 pA 60 pA

8 mA 25 mA 60 mA 40 mA

104 Chapter 2: PBASIC

STOP BS2 BS2e BS2sx BS2p
STCP

Stops the program

Example:
t one var byte
start: tone = 2000
freqout 11, 1000, tone
st op ‘stops the program
goto start ‘never executed
Remark:

The program stops. In opposition to the command end the BS2 does not switch to the low-
power mode. All outputs stay active.

Chapter 2: PBASIC 105

STORE BS2p
STORE Progransl| ot #
Specifies a program slot for READ and WRITE

It means:
Program slot# Number of the program slot (0...7)
Example:
' {$STAWP BS2p, storel}
lang var nib
char var nib
val ue var byte
addr var word
value = 7
lang = 1
| ookup lang, [0, 1], value
store val ue
debug ? val ue, cr
addr = text2
start: read addr, val ue
if value = 0 then exit
debug val ue
addr = addr + 1
goto start
exit: end
Text 1 DATA "Textzeile 1 in Deutsch",0
Text 2 DATA "Textzeile 2 in Deutsch",0
Text 3 DATA "Textzeile 3 in Deutsch",0
Remark:

The variable val ue controls the access to the text strings saved in different program slots of
the EEPROM. This way you can implement a multi-language dialog very easy.

For example, here the German text strings are in program slot# 0 and the English text strings
are in program slot#1.

The source of the program STORE1.BSP reads as:

Text1 DATA "Text line 1 in English",0
Text2 DATA "Text line 2 in English",0

106 Chapter 2: PBASIC

Text3 DATA "Text line 3 in English",0

Chapter 2: PBASIC 107

TOGGLE BS2 BS2e BS2sx BS2p
TOGGELE pi n#

Switches an 1/O pin to output and inverts is state

It means:

pin# I/O pin as output

Example:

| ow 8

| oop: pause 200
toggle 8
got o | oop

Remark:

The state of I/O pin 8 changes every 200 ms.

108 Chapter 2: PBASIC

WRITE BS2 BS2e BS2sx BS2p
WRI TE | ocati on, vari abl e
Writes a byte into EEPROM

It means:
location Memory location in EEPROM (0-2047)

variable Variable with byte to save

Example:

addr con 0
val ue var byte

val ue = $AA

wite addr, value
value = 0

read addr, val ue
debug hex2 val ue, cr

val ue = $55

wite addr, value
value = 0

read addr, val ue
debug hex2 val ue

Remark:

The number of write cycles for EEPROM is limited. For the BS2 a minimum 10 million write
cycles are allowed. The other types of BS2 allow 100,000 write cycles.

For BS2p the STORE command selects a program slot for READ and WRITE.

Chapter 2: PBASIC 109

XOUT BS2 BS2e BS2sx BS2p
XQUT npi n#, zpi n#, [house\ keyor command{\ cycl es ..}]

Sends a X-10 Powerline Control command to a PL513 or TW523 Powerline Interface Module
(60 Hz)

It means:
mpin# I/O pin for modulation control
zpin# I/O pin for zero-cross detection
house House Code (0-15 =“A” - “P”)
key or command Key Number (0-15 =“1” - “16”) or command cycles
Example:
zpin con O ' Zer o- cr 0ssi ng- det ect
npi n con 1 ' Modul ation-control pin
houseA con 0 'House code: 0=A, 1=B . . .
Unitl con 0 "Unit code: 0=1, 1=2 . . .
Unit2 con 1 "Unit code: 1=2

xout npin, zPin,[houseA Unitl] 'Talk to Unit1.
xout mnPin, zPin, [houseA uniton] 'Turn ON

pause 1000 'Wait a second.
xout nPin, zPin, [houseA unitoff]' Turn CFF.

xout nPin, zPin,[houseAUnit2] 'Talk to Unit?2.
xout nPin, zPin, [houseA\ uni toff]' Turn CFF.

xout nPin, zPin, [houseAdim10] ‘'Dmunit.

Remark:

X-10 Commands Value || Powerline

|| I'nterface BS2
UNI TON 940010 | | Pi n Pi n
UNI TOFF 941010 | |
UNI TSOFF 941100 | | 1 zPin
LI GHTSON 940100 | | 2 G\D
DM 941110 || 3 G\D
BRI GHT 940110 | | 4 nPi n

110 Chapter 2: PBASIC

2.2 Comments about the Instruction Set

The BS2 commands explained in the last chapter have varying complexity. While the
explanation of some commands need less then one page, the explanation of other commands
need several pages.

Due to the compact presentation all explanations in the last chapter were short. In this chapter
we will give some tips about using some of the more complex commands.

Separate chapters contain extensive explanations to specific commands or command groups
like 1-Wire and LCD commands. Therefore they are not listed here.
2.2.1 SERIN and SEROUT

A big strength of all BASIC Stamps are the features of serial data exchange. Practically, each
of the 16 1/O pins can be used as a serial input or output.

Questions about serial transmission rates need careful consideration. If you ignore the given
possibilities you might be in for a difficult debugging session.

Tracy Allen published a very detailed analysis of the SERIN and SEROUT timing
[www.emesystems.com/BS2rs232.htm]. Read this informative web site for more tips.

Note that the serial communication of all BASIC Stamps does not operate in interrupt mode.
That means that only a data exchange occurs during execution of the SERIN and SEROUT
commands.

This usually doesn’t represent a problem for sending data.

Receiving data is more complex. The SERIN command must be executed to get data from a
given I/O pin. You have to know when a transmitter will send data to the BASIC Stamp. If
nothing is sent the SERIN command waits and blocks the program from further execution. Let
us look behind the scene for a proper serial data exchange.

2.2.1.1 SEROUT

The SEROUT command is provided with some parameters briefly explained in chapter 2.1.
Here the command is shown with its possible parameters:

SERQUT t pi n#{\ f pi n#}, baudrmode, {pace,} {tineout,tlabel,} [outputdata]

Chapter 2: PBASIC 111

Not all parameter combinations are allowed in command SEROUT.

The simplest serial output operation you will find in many application programs makes use of
the used I/O pin, the baud rate and the data to be sent.

' {$STAWP BS2}

T™xD con 16 ' TxD at SOUT

baud con 16468 ' N9600 for BS2

| oop: serout TxD, baud, ["Hello world", cr]
pause 1000
goto | oop

The short program example above send the string “Hello world“ and a CR in an endless loop.
The pause of one second is for a better visualization only and has no importance for the
communication itself.

If you comment the PAUSE 1000 command then it is ignored. Inspecting the I/O pin with an
oscilloscope you can see short delays between the repeated SEROUT commands yet.

The data stream is not continuous because the SEROUT command must be interpreted at
first before the characters can be sent. Beside this there are gaps between every single
character.

The next program example shows how the parameter pace lengthens the gap.

' {$STAWP BS2}

™D con 16 ' TxD at SOUT

baud con 16468 ' N9600 for BS2

pace con 500 ' Pace = 500 s

| oop: serout TxD, baud, pace, ["Hello world", cr]
pause 1000
goto | oop

Have a look to the Debug Window of StampW and you can see a delayed serial output of the
string “Hello world”.

112 Chapter 2: PBASIC

For the synchronization of the data exchange between receiver and transmitter the BS2 offers
the possibility of flow control with an additional 1/O pin for handshaking.

The next program example uses I/O pin 15 for flow control.

' { $STAWP BS2}
™D con 16 ' TxD at SOUT
Fpi n con 15 "Fpinis I/Opin 15
baud con 16468 ' N9600 for BS2
| oop: serout TxD, baud, [cls]
serout TxD\ Fpin, baud, ["Hello world", cr]
got o | oop

Opposite of the first SEROUT command the second SEROUT command sends data only
when I/O pin 15 goes high to signalize that it's “ready to receive”.

The parameter baud of 16468 switches the BS2 to inverted data transmission mode at 9600
baud (8N1). A receiver must signalize that it is “ready to receive” with high on it's /O pin
responsible for flow control.

If the receiver does not signalize “ready for receive” \then the program example above stops
with the second SEROUT command. Use timeouts to avoid such situations.

In our next program example we wait a time of 100 ms for the “Ready to receive®. If no “ready
to receive” is detected during this time the program branches to a timeout handler beginning
with tlabel. In our program example the function of this handler is the output “Timeout
occurred.” in the Debug Window.

' {$STAWP BS2}

™D con 16 ' TxD at SQUT

Fpi n con 15 "Fpinis I/Opin 15

baud con 16468 ' N9600 for BS2

tout con 100 ' Ti meout = 100 ns

| oop: serout TxD\Fpin, baud, tout, tlabel, ["Hello world",cr]
pause 1000
goto | oop

tlabel: debug "Timeout occurred.", cr

got o | oop

Chapter 2: PBASIC 113

Note that a timeout and a delayed transmission of serial data using pace can not be
combined.

2.2.1.2 SERIN

The SERIN command too is provided with some parameters briefly explained in chapter 2.1.
Here the command is shown with its possible parameters:

SERI N rpi n#{\ f pi n#}, baudrmode, {plabel,} {timeout,tlabel,} [inputdata]

We start our short program examples with the simplest input — receiving one single character.

' { $STAWP BS2}
RxD con 16 'RxD at SIN
baud con 16468 ' N9600 for BS2

char var byte

| oop: serin RxD, baud, [char]
debug cr, "D ", char
got o | oop

The byte variable char saves the character received. To simplify matters we use serial input
I/O pin 16. We have to note that in this case all received characters will be sent back to the
transmitter as an echo.

To distinguish between output from DEBUG and SEROUT we placed ahead the characters
“D:” in the DEBUG command.

Sending characters from the PC keyboard to the BASIC Stamp is no problem due to the
delays in typing. If the characters come with the specified baud rate (without a gap between
the characters) from a measuring device, GPS or something similar then characters can be
lost and the communication can hang.

To synchronize the receiver with a transmitter we use flow control. In the next program
example we use I/O pin 15 for flow control. The rest of the program is unchanged.

114 Chapter 2: PBASIC

' { $STAWP BS2}

RxD con 16 '"RxD at SIN

Fpi n con 15 "Fpinis I/Opin 15
baud con 16468 ' N9600 for BS2

char var byte

| oop: serin RxD Fpin, baud, [char]
debug cr, "D ", char
got o | oop

The parameter baud of 16468 switches the BS2 into inverted transmission mode with 9600
baud (8N1) again. In this case the BS2 signalizes it's “ready to receive” by showing a high
signal on the flow control pin. If the SERIN command is finished then the flow control pin goes
low to avoid sending more characters. If the expected data isn’t received the program would
stop at the SERIN command. Here a timeout would help avoid this situation.

The timeout in the next program example can be used independent of flow control. If there is
no data in the t out time then the program detects a timeout and branches to the timeout
handler NoDat a.

' { $STAWP BS2}

RxD con 16 "RxD at SIN

Fpi n con 15 "Fpinis I/Opin 15
baud con 16468 ' N9600 for BS2

t out con 1000 " Ti meout = 1000 ns

char var byte

| oop: serin RxD\ Fpi n, baud, tout, NoData, [char]
debug cr, "D ", char
goto | oop

NoData: debug cr, "No Data received - Tinmeout."
pause 1000
got o | oop

Avoid the values tout = 0 and tout = 1. In these cases the BS2 has a timeout.

For more security of data exchange you can use the parity check (7E1). As shown in the next
program example, a parity check works independent of a timeout.

Chapter 2: PBASIC 115

Because the DEBUG command only works with 9600 Baud 8N1 we have to use other I/O pins
for serial communication at 9600 Baud 7E1.

' {$STAWP BS2}

RxD con 1 '"RxDis I/Opin 1
Fpi n con O "Fpinis I/Opin O
baud con 24660 ' N9600- 7E1 for BS2
t out con 1000 ' Ti meout = 1000 ns

char var byte

| oop: serin RxD\ Fpi n, baud, BadData, tout, NoData, [char]
debug cr, "D ", char
goto | oop

NoData: debug cr, "No Data received - Tinmeout."
pause 1000
goto | oop

BadDat a:
debug cr, "Bad Data - Parity Error."
pause 1000
goto | oop

Receiving single characters is quite rare. Normally we will receive strings and evaluate them in
the a PBASIC program. With the many formatters the BS2 gives very good support for these
tasks.

The BS2 can use a string as an argument in the SERIN command. We must first declare this
string as a byte. After receiving this byte an array is filled with the received characters.

' {$STAW BS2}

RxD con 16 'RxD at SIN

baud con 16468 ' N9600 for BS2

tout con 1000 ' Ti meout = 1000 ns

SerString var byte(11) ' Make a 11-byte array

SerString(11) = 0 ‘Character 0 is the String Term nat or
| oop: serin RxD, baud, [str SerString\10]

debug str SerString ' Display the string.
got o | oop

116 Chapter 2: PBASIC

In our program example we declared an array of 11 bytes. The last bytes were set to 0 during
initialization. The SERIN command receives 10 characters and saves them to the byte array.

On the 11th character we encounter a O-terminated string in the byte array. The DEBUG
command expects a O-terminated string.

A 0 string terminator is often used in strings with a variable length. If you wait for strings with a
variable length as input data then SERIN can stop receiving after a defined number of
characters or when a special character was detected.

In the next program example a O-terminated string is expected. Receiving stops after 10
characters or a 0. Use the DEBUG command to visualize this example.

' {$STAW BS2}
RxD con 16 'RxD at SIN
baud con 16468 ' N9600 for BS2
t out con 1000 ' Ti meout = 1000 ns
SerString var byte(11) ' Make a 11-byte array
SerString(11) = 0 ‘Character 0 is the String Term nat or
| oop: serin RxD, baud, [str SerString\10\"0"]
debug str SerString ' Display the string.
got o | oop

The serial data format of a multimeter could look like this:
VDC = 12345 mV<CR> FRQ = 12345 Hz<CR>

If you need the result of the DC voltage measuring only then you can filter these value very
simple. The following program example shows the usage of the formatters wait and skip.

' { $STAWP BS2}

RxD con 16 'RxD at SIN

baud con 16468 ' N9600 for BS2

val ue var word

| oop: serin RxD, baud, [wait ("VDC ="), skip 2, dec val ue]
debug "Voltage = ", dec val ue

got o | oop

Chapter 2: PBASIC 117

The parameter wait ("VDC =") checks the input data stream for the characters “VDC =". Skip 2

passes the next two characters — spaces in this example. The characters before CR are
changed to a decimal number.

Use the formatter waitstr to compare a saved string with the received data. In the next
program example a string consisting of four characters is sampled for comparison.

118 Chapter 2: PBASIC

This pattern is compared with the next set of characters received. If the compare finds the
strings the same fits then SERIN is finished. The loop repeats after the message “Matching
Pattern found.”

' {$STAWP BS2}

RxD con 16 '"RxD at SIN

baud con 16468 ' N9600 for BS2

SerString var byte(5) ' Make a 5-byte array.

SerString(5) =0 ' Put O0in last byte.

| oop: serin RxD, baud, [str SerString\4] "CGet the string
debug "Waiting for: ", str SerString, cr

serin RxD, baud, [waitstr SerString] 'Vait for a match
debug "Matching Pattern found.", CR
goto | oop

The quickest way to receive data is given in the format serin RxD, baud, [str
Ser Stri ng\ L] . With this simple syntax the BS2 can receive data with 9600 Baud without
gaps. If there are further arguments as wait or skip then the interpretation needs more
resources and the BS2 could loose characters.

For the BS2p there is an enhanced possibility for a temporary saving of the received data
using scratch pad RAM.

' {$STAWP BS2p}

RxD con 16 "RxD via SIN

baud con 16624 ' N9600 for BS2p

N con 16 "Buffer length

char var byte(N) 'Byte array

addr var byte ' Addr ess poi nt er

| oop: serin RxD, baud, [wait("ABC'), spstr N

for addr = 0 to 15

get addr, char (addr)
next
debug str char\16, cr
goto | oop

Chapter 2: PBASIC 119

The SERIN command saves the characters after recognizing the “ABC”. Then, the next 16
characters are saved to the BS2p’s scratch pad RAM.

To display the received characters with DEBUG the string is first saved in a byte-array and
then displayed in the Debug Window.

This way you can save complex strings up to 126 bytes into the scratch pad RAM for further
processing or parsing of the individual characters.

You will find such an example in chapter 6.3 for processing GPS data.

2.2.2 RUN

2.2.2.1 Several programs in the controller

Sometimes electronic devices support different functions activated by a query of a switch after
power-on. Most of us know these configuration switches as DIP devices mounted on a printed
circuit board accessible to the user.

The enhanced EEPROM of the BS2x can contain different applications in different program
slots. A DIP switch is connected to the BS2x and after the program starts this switch is
gueried. Based on this query the program branches to a different program slot.

In the next program example the keys of the BASIC Stamp Activity Board will replace the
configuration switch idea by serving as a program selector. The basics of this branching are
explained in the next program example.

switch var nib
switch = ins.nib.2 & $03
' debug bin2 switch, cr

BRANCH (switch), [PRA, PRGL, PRX, PRG]

PRGL: RUN 1 'redirect to page 1
PR®2: RUN 2 'redirect to page 2
PRG3: RUN 3 'redirect to page 3
PRQD: 'stay on page O

120 Chapter 2: PBASIC

The command swi tch = ins. NIB2 & $03 queries the I/O pins 11-8 (keys on the BASIC
Stamp Activity Board) and masks two bits so only I/O pin 8 (blue key) and I/O pin 9 (black key)
can be active.

You can test the branching with the follow programs on the BASIC Stamp Activity Board. To
show the links to a project the appropriate Windows Editor screenshots are included.

We have explained the details in chapter 1.3.1. Figure 18 shows the main program in program
slot #0. Figure 19 shows one of the executable applications in program slot#1. Here the whole
application consists of one DEBUG command only. But this does not matter.

#37BASIC Stamp - C:\ProgrammelBASIC 5tamp"-.,BSZp"-.,redire%;:: =gl =l
File Edit Run Help

DEadH S| &0 & EAEFK| &&&& €
[:redirect bsp | [redirect] 1:pgl.bsp | [rediect] 2:pg2 bsp | [rediect] 3:po3 bsp |

' Test of Program Selection with BS2p—24 and Stamp Actiwity Board

'{$STAMF BS2p. pgl. pgl. pgil

ERAHNCH (INS.HIEZ| & $03).[prgl. prgl. prg2. prgl]
prgl: DEBUG CE, "Page 0"

rrgl: EUH 1

prg?: RUH 2

prgd: RUH 3

END

| 517 | Modified | | Y

Figure 18 Program REDIRECT.BSP Program Slot #0

Chapter 2: PBASIC 121

#37BASIC Stamp - C:\Programme’BASIC Stamp’,BS2pipal.b 'E] 4
File Edit Run Help

DEaE & 2B & mREFR &&A& &
D:redirectbzp [redirect] 1:pgl.bsp |[redirect] 2:pg2.bsp| [redirect] 3:|:ug3b$|:u|
[DEETG CE, "Page 1"

END

[1:1] I | 4
Figure 19 Program REDIRECT.BSP Program Slot #1 (PG1.BSP)

2.2.2.2 Subroutines in different program slots

Some programs are enhanced by using several program slots for program fragments or
subroutines.

The goal is to ensure that after processing of such a subroutine that the program jumps to the
place it was after the subroutine call back.

Figure 20 shows with dotted lines how to switch between the program slots for the common
subroutine technique. The dotted lines show what the RUN command is able to carry out.

122 Chapter 2: PBASIC

Entry after Reset

|
Page 0 ! Page 1

Figure 20 Switch between program slots

A small trick helps us here. At the beginning of each program slot we’'ll place a branch table.
An example shows the principle.

Listing 1 shows the main program in program slot #0. This program slot is active after Reset.
Due to the default initialization of the variable r eent ry in slot #0 the main program does not
branch and begins at the label st ar t to proceed.

As Listing 2 shows, the called subroutines add and ul t are placed in program slot #1.

Chapter 2: PBASIC 123

' {$STAWP BS2p, sl ot 1}

'The mai n programcal | s subroutines (tasks) in another
"programslot. The point for reentry nust be defined
"before the subroutine call.

reentry var nib 'reentry points are _1 and _2
task var nib

X var byte
y var byte
z var word

branch reentry, [start, _1, _2]

170
85

start: X
y

‘access task 0 on programslot 1
reentry =1 : task =0 : run 1
1: debug dec5 z, cr

‘access task 1 on programslot 1

reentry =2 : task =1 : run 1
2: debug dec5 z, cr

end

Listing 1 Main Program in Program Slot #0

reentry var nib 'used by pageO
task var nib 'used by pageO
X var byte
y var byte
z var word

branch task, [add, nult]

add: z = x +vy 'operate task O
run 0 'reentry in pageO

mul t: zZ=xX*y 'operate task 1
run O 'reentry in pageO

Listing 2 Subroutines in Program Slot #1

124 Chapter 2: PBASIC

Use some precaution when calling these subroutines after the initialization of the variables x
andy.

The subroutine add in program slot #1 is declared as task 0 in the br anch command, while
the subroutine mul t is declared as task 1. Accordingly the variable t ask must be set in
program slot #0 before the call of the respective subroutine.

In the same way we have to organize the return with the help of the variable reentry. The
line following the subroutine call must be marked with a Reentry Label. After returning to
program slot #0 the br anch command branches to the referred label.

To avoid access conflicts on the variables, both program slots begin with the variable
declarations. This ensures the declaration of the variables is global.

2.2.3 Switching the I/O Blocks with the BS2p

In the next program (Listing 3) you can test the functionality of the I/O Block Switching using
the BASIC Stamp Activity Board and a BS2p-24.

1/O Test for BASIC Stanp Activity Board with BS2p-24

' { $STAWP BS2p}
| ow 11 ' Red key LED on
gosub brk ' To | eave breakpoint press the bl ue key
high 11 ' Red key LED of f
' auxio
| ow 10 ' Black key LED on
gosub brk ' To | eave breakpoint press the bl ue key
hi gh 10 ' Black key LED of f
mai ni o
end
br k: debug cr, "Press the blue key to continue..."
brk1: if in8=1 then brkil
pause 100
br k2: if in8=0 then brk2
return

Listing 3 Switching the I/O Blocks

In this source code example the command auxi o is commented by the leading character ’
and is without any effect.

Chapter 2: PBASIC 125

After the program starts the LED connected to 1/0O pin 11 (located above the red key on the
BASIC Stamp Activity Board) is switched on. Next the first breakpoint is reached.

Leave this breakpoint by a making 1/O pin 8 low (or by pressing the blue key on the Stamp
Activity Boards).

In the next step the LED connected to I/O pin 11 switches off and the LED connected to 1/O
pin 10 switches on. Handle the next breakpoint as before and the LED connected to I/O pin 10
switches off, too.

Now activate the I/O Block Switch by removing the comment character ’ before auxi o and
download again.

You will see that the LED connected to 1/0O pin 10 does not work. The I/O operation points to
the AUXIO block not available in a BS2p-24. Therefore this I/O operation has no effect in a
BS2p-24.

2.2.4 Interrupting by Polling the BS2p

The BASIC Stamp 2 has no hardware interrupt mechanism. For reactions to external events
this is sometimes a disadvantage.

Sure, there was the possibility to check any I/O pin periodically for its logical condition, but a
short response to a certain logic state makes this option difficult.

The BS2p has a polling mechanism for time-critical applications. This polling mechanism
eliminates the disadvantage mentioned above associated with sporadically check I/O states.
But, do not confuse this polling with real interrupts. Table 4 lists an overview for the Polling
Commands.

126 Chapter 2: PBASIC

Polling Command Effect

POLLIN Pin, State Configuration of checked inputs

Defines the output activity after a polled-input event

POLLOUT Pin, State
occurred

POLLMODE Mode Defines the Polling Mode
Specifies a program running after a polled-input event
occurred

Switches the BS2p for a certain time into sleep state
and polls the polling inputs afterwards

POLLRUN Slot

POLLWAIT Period

Table 4 Overview of BS2p Polling Commands

We'll describe this new polling mechanism next with small and clear program examples in
significant detail.

Use the POLLI N command to declare the I/O pin to poll and define the state of the polled-input
event. The output activity depends on the commands POLLOUT, POLLMXDE and POLLRUN and is
triggered when the polled-input event occurred.

Several I/O pins can be declared for polling. The polled-input event occurs if one of the polling
conditions comes true.

The BS2p firmware checks the I/O pins defined by the command POLLI N at the end of each
instruction and before reading the next PBASIC instruction — practically as a background task
in that it is done between lines of code. This mechanism allows a significantly faster response
to a polled-input event than a programmed query of 1/0 pins by PBASIC instructions.

The POLLQUT command declares an I/O pin and it's state after a polled-input event occurs.

The POLLMODE command defines the polling mode according to Table 5.

Chapter 2: PBASIC 127

Mode Effect

Polling disabled, Clears the POLLIN and POLLOUT configuration
Polling disabled, Saves the POLLIN and POLLOUT configuration
Polling enabled with POLLOUT and POLLWAIT function
Polling enabled only with POLLRUN function
Polling enabled with all Polling functions
Clears the POLLIN configuration
Clears the POLLOUT configuration
Clears the POLLIN and the POLLOUT configuration
-15 Identically to 0-7, but POLLOUT states are saved

0o NOoO 0ol WDNPEFEL O

Table5 POLLMODE Parameter

With this information we can have alook to the first program example.

' {$STAWP BS2p}

InitPolling:
PCLLIN 8,0 " If this polled input is Lo
PCLLIN 9,0 ' or this input is Lo
POLLQUT 11,0 ' then the polled output is Lo
POLLMXDE 2 ' Pollout only

Loop: ' This in the "main" program
goto LOCP

I/O pins 8 and 9 will be polled. The polled-input event occurs when one or both polled inputs
are low.

Using the BASIC Stamp Activity Board this means pressing the blue or the black key.
When the polled-input event occurs 1/O pin 11 switches low and the LED switches on.

The defined polling mode allows only the POLLOUT and the POLLWAI T function. POLLWAI T is not
used here.

128 Chapter 2: PBASIC

After initializing the polling the program runs an endless loop and displays it's activity with the
DEBUG command.

In our program example the output defined by POLLOUT 11, 0 reacts to the polled-input event
directly.

As long as one polling input detects low the polling output is also low, the polling output
switches to high immediately. The Latch Option of the poll mode can freeze this state. This
means after the polled-input event the polling output switches to low as before, but stays low
independent what happens on the polling inputs.

In the next program example the poll mode was changed from 2 to 10.

' {$STAWP BS2p}

I'nitPolling:
PCOLLIN 8,0 " If this polled input is Lo
PCLLIN 9,0 ' or this input is Lo
POLLQUT 11,0 ' then the polled output is Lo
POLLMXDE 10

Loop: ' This in the "main" program
DEBUG " *
goto LOCP

With this latch function we have the ability to monitor an 1/O pin and to react to the polled-input
event later. The polled-input event can be processed after a continuous routine.

Again, we modify our program example.

' {$STAWP BS2p}
i var NB
I'nitPolling:
PCOLLIN 8,0 " If this polled input is Lo
POLLIN 9,0 'or this input is Lo
POLLQUT 11,0 ' then the polled output is Lo
PCLLMXDE 10 ' Enable | atched POLLOUT only
Loop: ' This in the "mai n" program

Print always 10 dots without any interruption
for i=0to 9
DEBUG "." : pause 100

Chapter 2: PBASIC 129

next
DEBUG CR

on a latched polling event goto the handl er
IF IN11=0 THEN Event

goto LOCP

Event : ' handler for latched polling event
DEBUG CR, "Latched Polling detected.", CR
PCLLMXDE 10 ' restore of polling initialization
goto LOCP

In the main loop DEBUG outputs a package of 10 dots before querying I/O pin 11. If this I/O pin
were set to low from a polled-input event occurring during DEBUG outputs then the program
branches to the label Event and outputs “Latched Polling detected.” The following POLLMODE
10 command re-initializes the polling and I/0 pin 11 switches to high again.

The command POLLRUN specifies a program that runs after an polled-input event occurred.
This program can be saved in any program slot. The slot number is parameter of POLLRUN.

We add the command PCLLRUN 1 to the last program example and change the poll mode to
4 to enable all polling activities.

' {$STAWP BS2p, pol | run}

I'nitPolling:
PCOLLIN 8,0 " If this polled input is Lo
POLLIN 9,0 'or this input is Lo
PCLLQUT 11,0 ' then the polled output is Lo
PCLLRUN 1 ' and programin S ot #1 runs.
POLLMXDE 4 ' Al polling functions enabl ed
Loop: ' This in the "main" program
DEBUG ". "
goto LOCP

As defined, the program running after the polled-input event occurred must be placed in
program slot #1.

130 Chapter 2: PBASIC

' POLLRWN Activity

| oop:
debug "+"
goto | oop

After the program downloads it starts by initializing the polling and running in an endless loop.
In this endless loop the DEBUG command outputs one dot after another.

When the polled-input event occurred 1/O pin 11 switched to low and the program in program
slot #1 begins. You can watch the Pol | r un activity by a repeated output of the character “+*
by the DEBUG command.

Finally, let's have a look to the POLLWAI T command. POLLWAI T queries (a minimum of) one
polling input periodically while the BS2p switches between these queries to its power-down
mode with about 60 pA current consumption. The periodic query corresponds to the NAP
command and its parameters are listed in Table 6.

Period Polling Cycle

10 ms

36 ms

72 ms

144 ms

288 ms

576 ms

1,152 s

2,304 s

No Power-Down (< 160 us)

Table 6 POLLWAIT Parameter

co~NO O, WNEO

Let’s modify our program example for some additional experimentation.

Chapter 2: PBASIC 131

' { $STAWP BS2p}
InitPolling:
PCOLLIN 8,0 " If this polled input is Lo
PCLLIN 9,0 ' or this input is Lo
POLLQUT 11,0 ' then the polled output is Lo
POLLMXDE 2 " Al polling functions enabl ed
Loop: ' This in the "main" program
POLLWAI T 7 " Polling period 2.3 s
DEBUG CR, "Pol | i ng event detected"
goto Loop

The endless loop contains the command POLLWAI T 7 which means every 2.3 s both polling
inputs will be queried. When the polled-input event occurs the command DEBUG CR, ™...” is
executed. Afterwards the BS2p goes to sleep again.

With POLLWAI T 8 if an polled-input event is detected in less then 160 us the BS2p does not
switch to the Power-Down Mode.

The Polling Mode of the BS2p is an excellent way for a fast reaction to external events. The
possibilities discussed here were explained with some simple program examples. Before
using the polling in your own application experiment with similar simple program snippets to
reproduce the desired behavior.

To generate a more readable source avoid the use of pin numbers and constant definitions
instead. For example:

D sPol A rcCfg con 0 ' Pol |l Mbde O

D sPol | SaveCf g con 1 ' Pol | Mode 1

EnPol | edQut put con 2 ' Pol | Mode 2

EnPol | edRun con 3 ' Pol | Mbde 3

EnPol | edAl | con 4 ' Pol | Mode 4
drPoll I npCfg con 5 ' Pol | Mode 5
drPollQutCig con 6 ' Pol | Mode 6
drPol I CCr g con 7 ' Pol | Mode 7

stat eH con 1

st at eLo con O

pl NL con 8 ' Polllnput Pin# 8
pl N2 con 9 ' Polllnput Pin# 9
pQUT con 10 ' Pol |l Qutput Pin# 10
I'nitPolling:

PCOLLIN pI N1, statelo " If this polled input is Lo

132 Chapter 2: PBASIC

PCLLIN pl N2, statelo
POLLQUT pQUT, statelo
POLLMODE EnPol | edQut put

Loop:
DEBUG ". "
goto LOCP

or this pinis Lo then
the polled output is Lo

This in the "main" program

Chapter 3: Enhanced /0 133

3 Enhanced I/O

Beyond direct serial I/O control used in the BS2, the BS2p has additional capabilities useful for
networking control of more complex devices.

3.1 I’C-Bus
The I°C-Bus was developed for data exchange between different devices such as EEPROMs,
RAMSs, A/D and D/A converters, RTCs and microcontrollers in a networked environment.

Figure 21 shows all required connections in a typical I°C-Bus network. The SDA and SCL
lines connect all members of the network. Pull-up resistors connect these lines to the supply
voltage Vcc.

In an I°C-Bus network several masters can be connected with several slaves (in a Multi-
Master System). The I°C-Bus protocol addresses the members of the network.

0

SDA

SCL

& Py & &

Master Slave Master Slave
{Transceiver) {Receiver) (Transveiver) {Receiver)

Figure 21 I°C-Bus Network

Figure 22 shows the protocol for writing and reading of one byte. There are further functions,
as sequential write and read. We’'ll concentrate on the basic functions only.

134 Chapter 3: Enhanced I/O

Bytewrite [ST]_[LLTT1 A[TTTTTTTIATTTTTTITTIAP]
[slave Address | | word Address | | Data Byte |

RandomRead [ST|_[TLITT1 AlTTTTT T T TIAST LI T TTIA[TTTTTTTTIR]
[slave Address | | word Address | | Sslave Address | | Data Byte |

Figure 22 Writing and Reading of one Byte

The peripheral functions depend on the specific device under control. Beside EEPROMSs and
RAMs from numerous manufacturers there are a lot of further I°C-Bus devices:

e |/O expander devices

e LCD and LED driver devices

« Video controller

e PAL/NTSC TV Processors

¢ TV and VTR Stereo/Dual Sound Processors with integrated filters
¢ Hi-Fi Stereo audio processor interface for color decoder

¢ YUV/RGB switches

¢ Programmable modulators for negative video modulation and FM sound
e Satellite sound receiver

e Programmable RF modulators

e BTSC Stereo/SAP decoder and audio processor

e 1.3 and 2.5 GHz bi-directional synthesizer

e 1.4 GHz multimedia synthesizer

The usage of the I°C-bus is effective when several I°C-Bus devices are connected using their
the SDA and SCL lines. The number of pins used on the BS2p for a data exchange via I°C-
Bus is limited to these two lines. The serial transmission allows a transmission of data to
several different addressed I°C-Bus devices.

Chapter 3: Enhanced I/0 135

3.1.1 Printer Control with I1>)C Output
With the commands | 2C Nand | 2C0UT the BS2P communicates using the I?C-Bus.

This chapter shows the I2)C output with the | 2C0UT command. This statement, written in one
line, handles a lot of data dialogue over the SDA and SCL lines.

The format of the commands 120 N and |1 2C0UT were shown in Chapter 2.1. It is useful to
remember to the earlier types of BASIC Stamps to see the many PBASIC statements required
for creating the necessary pulse scheme used in the I1°C-Bus connection. In an additional
paragraph we’ll show such an example with the BS2 but first we’'ll use the BS2p’s easy—to-use
command set.

We will use the PCF8574A I/O expander circuit from Philips as a receiver for the I*C-Bus
telegram.

With this integrated circuit a serial transported data byte becomes an eight-bit parallel output.

Using the PCF 8574A I/0O expander the BS2 uses only 2 I/O lines (SDA and SCL) to output
eight data bits in parallel.

What can we do with the single byte output of PCF8574A?

In this sample application a printer’'s Centronics port is connected to the PCF8574A. Printers
are frequently discarded or replaced upon installation of new computer equipment, making an
ample surplus supply readily available. As a result these reliable-working needle-based
printers are stored in many corners of your office.

With a BASIC Stamp we can use these printers for an occasional data output device.

In short we’ll show the Centronics transmission protocol. Detailed descriptions with web links
are shown in Chapter 9.

Figure 23 shows the pulse scheme of a Centronics byte transmission to the printer port.

The byte transmitted to the printer is a printable character or a control byte for the printer itself.

136 Chapter 3: Enhanced I/O

DATA Data Data
/STROBE |] |]
JACKN |] |

sy [1

Figure 23 Centronics Port Data Exchange

For our simple example we need a minimum of two lines for DATA and /STROBE.

A data word from lines D1-D8 is adopted and interpreted from the printer with the low-active
strobe signal. It is stored in the data buffer for printing after recognizing the CR/LF signal
($0D,$0A). A control byte is transmitted to control the printer state.

It's also practical to include the BUSY signal, which comes from printer output.
A high level on this BUSY line means one of the following situations:

printer receives or interprets a data byte

printer is OFFLINE

printer is in error state

In addition, Figure 23 shows the active low signal /ACKN. With this signal the printer
signalizes its readiness for receiving new data. It is prepared for an interrupt signal to a
connected data transmitting device to start the transmission of a next data byte. This line is
not used in the given example. Also not used are the additional printer control lines like
missing paper (PE) or the common error-message /ERROR.

Figure 24 shows the circuit diagram to connect a printer to a PCF8574A using the I?C-Bus.

Chapter 3: Enhanced /0 137

+ 5\.f|

I exen (]I]

SOUT

ATN
s

A
FREJTRED

.m—

FCF2574

ETROBE
BUZY

PACEN

1
02
o3

+
i3
oS

X
o]

DB25F-90

Figure 24 Printer Control with PCF8574A

In Figure 24 the data lines from the PCF8574A’s output to the printer connector are drawn on
the bus connection. Because the PCF8574A’s outputs are not able to drive the connected
inputs in a high state, we need pull-up resistors on these eight data lines.

Missing pull-up resistors are often the reason for errors in data transmission with 1?C-Bus
connections.

There are many ways to print data from the BASIC Stamp with this circuit. One of them is to
receive data serially by the command SERIN. Another is the data generation by a connected
ADC or RTC. In our example we load a test string from the internal EEPROM. This test string
is terminated by ASCII 0 (O-terminated string) to recognize the end of the string.

In a program loop we will read all data bytes in sequence from EEPROM and transmitted
them via the PCF8574A to the printer buffer. After receiving the CR/LF the printer starts
printing two lines.

Listing 4 shows the program PRN8574.BSP.

138 Chapter 3: Enhanced I/O

- [Title J--------mmmmmmm e
" File...... pr n8574. BSP

' Purpose... Sanple for |2CQUT - statemnent.

' Author.... K aus Zahnert

' Started... 10.6.01

' Updat ed. . .

' Serial data transmi ssion fromBS2P to PC-8574 to get

' parallel data for CENTRONICS printer interface.

' Separate |lines between BS2P and printer control

' BUSY and / STROBE. ACKN and ot her controls are not used.

T [Constants J--------------------"ee -

adr 9574Aw con %91110000 ‘D0 =0 for wite
strb con 4
dat api n con O "l ow byte adressing |2C

pos var byte
r dbyt var byte

dirl = %0010000 'P4 = /| STROBE for out put
high strb

data "the big brown fox junps over the |azy dog", 13, 10
data "1234567890! §$%&/ ()=2",13,10

data $00 ‘termnation of string
pos = 0
————— [Miin Code J----------------ccmmiime e
wai t busy:
if in3 =1 then waitbusy ‘wait for printer
read pos, r dbyt ‘read act. Byte from EEPPRCM
if rdbyt = $00 then finis ‘goto end if recogni zed $00

debug dec pos, tab, hex2 rdbyt, tab, tab, rdbyt, cr
"display to screen

Chapter 3: Enhanced /0 139

pos = pos + 1 'prepare next position

i 2cout datapin, adr9574Aw, 0, [rdbyt] 'output to PCF8574A
low strb '/ STROBE- pul se to printer
hi gh strb

got 0o wai t busy

finis:
end

Listing 4 Printer Control via I*C-Bus (PRN8574.BSP)

The loop starts with label wai t busy. Polling the BUSY line is done before a character is
transmitted to the printer. This is a test of the readiness of the printer to receive a new
character.

After this the actual character is read from the addressed position of EEPROM. The output to
the printer is done using the 1 2C0UT command with a following /STROBE signal at 1/O-pin 9 of
BS2P.

The printer starts printing the complete string after receiving CR/LF. On the print-outs we have
an image of all the printable characters saved in the EEPROM (see the DATA lines).

An eye-catching fact in Listing 4 is shown following the command hi gh bt rb after | ow strb.
The Centronics specifications indicates that the active-low strobe pulse needs a minimal
length of 1 us. The pulse length resulting from | ow strb followed by hi gh btr b is longer due
to the time required for the command to execute from the BASIC Stamp’s interpreter.

The end of reading from EEPROM is recognized by the byte with value 00 used as string
terminator as described before.

3.1.2 Reading and Writing EEPROMs
You're probably already familiar with EEPROMSs from working with the BASIC Stamp.

The BASIC Stamp’s EEPROM is used as a re-writeable static memory for program tokens
and any program data you might want to store. The following program example demonstrates
the connection of a 2 KByte 24LC16 EEPROM as an external memory connected to the
BS2p’s I/0 pins. With this circuit you can save data permanently. It is useful as a memory for
datalogger applications or to transmit the EEPROM data to a PC via serial output. By
changing the direction of this transmission the PC can write data to this EEPROM.

140 Chapter 3: Enhanced I/O

Using a BS2p’s program slot as a temporary memory storage it is possible to duplicate (copy)
the contents of an entire EEPROM. With two simultaneous connected external EEPROMs the
device is able to copy the contents of one EEPROM to another directly.

Both 1 2C1 N and 1 200UT commands transmit the first byte as the device-address. EEPROMs
with higher capacity need a second byte as a sub-address.

In our example we use an address byte, whose bits are a device-specific device address (DA)
letting you select a particular device from several other devices on the bus. The address
selection A2-A0 must correspond to the wired address lines A2-A0 of the concerning device.

Data direction READ or /WRITE

So the address byte is formatted as shown below:

B7 B6 B5 B4 B3 B2 Bl BO
DA3 DA2 DAl DA0O A2 Al A0 RIW
1 0 1 0 0 0 0 1/0

The device address for the used EEPROM 24LC16 is $0A and A2-A0 which must correspond
to the wired address lines A2-A0.

Figure 25 shows the connection of a 24LC16 EEPROM to the BS2p using the I?C-Bus lines
SDA and SCL.

I * + 5]
S
— s0uT N
A0 00 SIN WEE
Al WP — ATN JRES f—r
A2 SCL 1 WSS Woo
WEE DA PO P15 —
L 1w Pl |——
> P2 P12 —
— Pz P12 f——o
24LC18 B i
— P P10 f—
Read _— | pg o
iy o A
Iud Tk
= ClearWrite BSZ2p-IC

Figure 25 Connection of an EEPROM 24LC16 to a BS2P

Chapter 3: Enhanced I/0 141

The state of the pushbutton is sampled from BS2p’s P2. A pressed pushbutton drives I/O pin
2 low and the EEPROM is available for deleting and writing. An unpressed pushbutton (open
state, as shown on Figure 25) means the EEPROM is ready for reading its content.

All operations of reading and writing data are secured by re-reading for test purposes. For this
we use program slot #5 in our program example for temporary memory.

The progress of reading or writing each data byte involves some additional delay to get a
visible (slower) operation you can see in the debug window. If a byte read differs from a byte
written an error message in Debug Window occurs. The program also stops.

To delete all data from EEPROM, we send $FF to each cell.

Coaeee- [Titl@ Jommmmmmmmmmmmmmemm i

File EEPR rwl. BSP
Purpose. .. Sanple for 12N /I2QUJT:
cl one external EEPROMvia bank 5

Aut hor. ... Kl aus Zahnert
' Started...1.7.01
' Updat ed. . .

' External switched pin 2 runs two separate parts of program

Wth pin 2 = high a plugged programred EEPRCM gi ves hi s

contents to bank 5 as an nirror.

Wth pin 2 = low a plugged EEPROMis del eted and then the

contents of bank 5 is transmtted (re-mrrored) to this

' EEPROM

" Al transnitted bytes are verified fromsource to
destination and di spl ayed on screen.

BT [Constants J----------------m-mmmmm

datapin con O " high byte addressing |12C
wr adr con $A0 'address of EEPROM write
r dadr con $AL ' address of EEPROMread

n var word
r dbyt var byte

142 Chapter 3: Enhanced I/O

backbyt var byte

"{$stanp bs2p}
debug cl s

if IN2 =0 then wEEPR "I N2=1:read external EEPROM
"I N2=0:del ./wite ext.EEPR

r dEEPR
debug cr ' from MASTER- EEPROM t 0 Bank5
debug"read EEPROM, cr, cr
pause 1000
For n=0 to 2047
i2cin datapi n,rdadr,n,[rdbyt] 'read ext. EEPROM cel l
store 5: wite n,rdbyt ‘wite to bank-cell
store 5. read n, backbyt ‘read back for verify
if rdbyt <> backbyt then errstr
debug dec4 n,tab, hex rdbyt,tab, "read ok", cr
next
goto finis

w EEPR
debug cr ‘del . EEPROMwith filled $FF
debug"del ete EEPROM, cr, cr
pause 1000

For n=0 to 2047
i 2cout dat api n, wradr, n, [$FF] "kill this line for
'test of EEPROM enpty
pause 10
i 2ci n dat api n, rdadr, n, [backbyt]
i f backbyt <>$FF then errstr
debug dec4 n,tab, "del ete", cr

next

"end ' >this statement for delete only

debug cr ‘wite EEPROM from bank5 cells
debug"wite EEPROM, cr,cr

pause 500

for n=0 to 2047 'from Bank5 to new EEPROM

store 5: read n, rdbyt
i 2cout dat api n, wradr, n, [rdbyt]
pause 10
i 2ci n dat api n, rdadr, n, [backbyt]
i f rdbyt <>backbyt then errstr

Chapter 3: Enhanced /O 143

debug dec4 n,tab, hex rdbyt,tab, "wite ok",cr
next
goto finis

errstr:
debug " ERRORoON cell-address = ",dec n,cr
goto finis

finis:
debug cr
debug "end of program", cr
end

Listing 5
Copy the content of an EEPROMSs with temporary saving (EEPR_RW1.BSP)

The program contains a commented line with the command end. If you activate this line the
program ends after deleting the EEPROM contents by writing $FF to each cell.

Changing the data is done with the push button. The I/O pin signalizes its state to “delete only”
or to “delete and write” in the same manner as shown with the commands “read “ and “write”.

For direct copy from one EEPROM to another of the same type, a second EEPROM must be
added to the circuit. There are two possibilities for doing this.

Either the second EEPROM (destination for written data) is connected with it's SDA and SCL
lines or both EEPROMSs are on the same SDA and SCL line - the classical usage of the I°C-
Bus.

When using the same SDA and SCL lines the address bits A2-A0 must be used for selecting
the device. In the program example the different address bytes rd_adr and wr _adr must
carry the different address bytes A2-A0 to be aligned to the wiring of these lines.

For example, address bit AO of the EEPROM can be set to high. The EEPROM to be read
would have all address lines grounded (A2.. AO = low). To identify the writeable EEPROM, its
address byte is settled to w _address = $A3.

3.1.3 LCD-Controller PCF2116 on I°C-Bus

This chapter describes the Philips PCF2116 LCD controller and its usage with a chip-on-glass
LCD module. A BS2p controls the LCD using 1°C-Bus.

Because the easy-to-use I°C-Bus commands are only present on the BS2p, we'll demonstrate
the application with a slightly different approach using a standard BS2 module.

144 Chapter 3: Enhanced I/O
The PCF2116 LCD controller has a 4-bit and 8-bit parallel bus on an I°C-bus interface so it's
well-suited for this type of application.
The PCF2116 has the following features:
¢ Single-chip LCD controller and driver

e Control of LCDs with one or two lines with 24 characters/line or two to four lines with
12 characters/line

e 5x8 pixellcharacter

e Voltage generation for the LCD and oscillator are on chip (external power supply is
also possible)

e Display RAM for 80 characters (not all cells of the display RAM are visible)

e Character ROM for 240 characters and character RAM for 16 characters

o [I’C-Bus Interface (with device address $74 or $76) and 4-Bit or 8-bit parallel bus
¢ CMOS/TTL compatible

¢ HD44780 compatible instruction set (11 instructions)

e Supply voltage VDD-VSS between 2,5 and 6 V DC — low current consumption

Addressing the PCF2116 LCD controller is the same as other I°C-Bus devices. Several
devices of the same type can operate on the same bus. Address line SAO is used for
programming the device subaddress, so two PCF2116s can operate in the same I°C-Bus.

The PCF2116’s instruction set is compatible to the standard HD44780 LCD controller but is
not provided in detail here. The required explanations follow on the program example.

The I°C-bus protocol for LCDs must be understood quite carefully. The lines used in parallel
control mode are to be configured as follows:

Control Byte Command Byte
[Co |RS |R-W [* |* |* [* |* |DB7 |DB6 |DB5 | DB4 | DB3 | DB2 | DB1 | DBO |

The LCD controller’s instruction set contains the control bit “Co”. Co = 1 in the control byte
signalizes that further control bytes follow, while Co = 0 the last control byte marks the end.

Figure 26 shows a sequence for writing data to the LCD module.

Chapter 3: Enhanced /O 145

Bl UL ATTTTTT T I T T O T T T T T T T TTTTT T8I

| Slave Address | | Contral Byte | | Diata Byte | | Contral Byte | | Data Bite |

Figure 26 Writing Data to the LCD Module

After the 1°C start condition (S) you'll be sending the slave or device address (here $74). After
sending the command one control byte and one data byte always follows. The last command
is marked with Co = 0 in its control byte. The whole sequence is finished with the I°C stop
condition (P).

Before explaining the program example it’s helpful to learn more about the LCD module.

3.1.3.1 Chip-On-Glass LCD Module MDLS12305COG

The PCF2116 LCD controller is offered in miniaturized chip packages. Several chip-on-glass
modules built with this LCD controller are available.

For example, Varitronix offers chip-on-glass LCD modules not thicker than the LCD itself. The
thinnest modules available are 1.8 mm thick with 0.7 mm glass substrate. You will find these
thin and light-weight LCD modules in mobile phones and pagers.

The MDLS12305COG LCD module from Varitronix shown in Figure 27 functions well with a
BASIC Stamp as a complete display unit.

Vo Yico
SDA VoD
SCLl 1 Vss
1 '
ooy |_|
PCF2116
Chip-On-Glass
3 Line by 12 Characters

Figure 27 MDLS12305COG

The PCF2116 LCD controller can drive four lines with 12 characters but the MDLS12305COG

module offers only three lines with 12 characters.
Figure 28 shows the pixel matrix of this LCD module with the test string "LCD Control with

PCF2116 and Stampll." displayed. To display one character a 5x8 pixel matrix is used. The

bottom pixel line is used to display a cursor.

146 Chapter 3: Enhanced I/O

OooOOoooOo0 oOoOommOn oooooodod
O0oO0000 mOOmOOmE0 OOooooodd
OooO00Od EOOECOED OOO0OCOmEc
OOOO0000 OEOECONDO OOO0COCEEC
OOOO0000O00 ODOMEEECOC0 OO0O0OOooOod
OooOooogd O000oogd Oooooodd
OoooOooOEO OOOODODOEO EOOCOoCmEc
L L L L 1 1§ ey [1 V1 | | Jumpy | § V1 1 | [
EOOOOOED OEOOCOCOED EO00C0C0COED
OO0O0O0000 OOOOO0O000 OoOooooodd
OOoOomEEECO0 OOOOOOoOno oooooogd
OOmO00OE0O OOOOOCOEO EOoooomc
el Jelefe] Ty T T 1 T T 1 Jeiy T T T T T] fmui
OOmOoOoOED OECO00ED E0oo0omEc
OOOEENO0 OOO0O0O0O000 OOOOoooOod
OooEOOO0O0 OEEOCOCOEOD OOoOomoood
OOmO0000 E0OEOOED oOomEomooo

OOEOCOOO0 ECOOmCmEc]
OOOEDODOO0 EOO00CEED
OONEENEND OEOOCCED

OoooOOoOomOn0 ECoooooOd

O0OmO0000 EEEEEEEC

OOOEEEED COEOOCOmO0
OOmO0000 mooooomc
OOmeOCOCOO0 ECOOoCOomcO
OOOEDODO0 EOOOCOCEc
mim) | | | | [migei |} | | Jmm]

OOCOEEECOCO CDOEECOCOCOO0
OOmOC0COEO mOOmOoOc
OOmeOCOCOmO ECOomOoOd
OOmO0OCOEDO mOomEoooc
mimimi | | Jmjmiy | | | | | | [m]

oEOOOmO0 OOoOoOoooOd

OEEENENCOCO OOOOOoOoOod

OoOoOOoOOO0 OOCOEEEEC]
OooO0oOod OoOomOooood
ooooooOod oomOoooOd
O0oO0000 ooomoood
O0OO0O00000 EEEEEEEC

OOEEECO0 OOoOoOoOomOd
OEOO0OEO0 OOooooomo
EOOOCOOEO DOONOCOCOEO
EOOOCOCOED NN CC
EEEEEEND COOmOCOO0O0

omECOOCOmO0 OooOooogd
HOOOOOMO OOOOOCmc

ONEEENEOO OOOOO00O00O0O
OooOOoOOmO COONEEECIC]

EEEEEEND COONEEECOC

Figure 28 MDLS12305COG Pixel Matrix with Test String
Figure 29 shows a memory map of the display RAM with display and memory area. The dark

The PCF2116’s display RAM contains 80 Bytes. Figure 28 shows that only a part of the
cells can be used as common RAM while the contents of the light cells are displayed. Pay
attention to these different memory areas in the case of direct addressing of the display RAM.

display RAM is actually used to display characters.

Chapter 3: Enhanced /O 147

Spalte | 1

4

5

6

7

8

e

10

11

1z

13

14

15

16

17

18

19

20

Zeilel | 00

01

03

04

05

06

07

08

08

0Aa

0B

0c

0D

0E

0F

10

11

12

13

ZeileZ | 20

21

23

24

25

26

27

28

29

23

2B

2C

ZD

2E

ZF

30

31

32

33

Zeile3 | 40

41

43

44

45

46

47

48

49

43

4B

4c

4D

iE

4F

50

51

52

53

Zeiled | 60

&3

&d

65

G5

&7

68

63

GR

&R

&C

&0

&R

&F

70

71

72

73

Figure 29 Memory Map of the Display RAM

An unfortunate characteristic of the MDLS12305COG LCD module is it's internal grounded
address line SAO for the LCD-Controller. Therefore you can use the device only at address
$74 and the I°C-Bus can be used to control only one MDLS12305COG LCD module.

3.1.3.2 Display Unit with MDLS12305COG LCD Module and BS2

The hardware of the display unit is quite simple because we will use the internal features of
the MDLS12305COG and the BS2 has to control the both 1°C-Bus lines only. Figure 30 shows
the required connections between BS2 and LCD module.

[+5v

GMND

100k

oTeTeTe
it

(=]

)

33k
3,3k

ﬁ100n

:

B

GND

100n

MOLE12306C0G

BSZ-IC

SCL ————J

=0,

W0
WLCD

WOD
WSS

Figure 30 Display Unit

148 Chapter 3: Enhanced I/O

The LCD module generates the LCD voltage internally. The potentiometer delivers the
contrast controlling voltage externally. The capacitor provides voltage filtering.

Both I°C-Bus lines have pull-up resistors which generate a high level on passive bus lines.

A RS-232 interface connects the BASIC Stamp to a PC for debugging and program
download.

In our program example (Listing 6) there are three strings for display saved in EEPROM. Each
string is terminated by ASCII 0.

————— [Title J---mmmmmmmm e
" File...... | 2C _LCD. BS2
" Purpose... |12GInterface for LCD driver PCF2116
" Author.... daus Kuehnel

Started... 29.12.97

' Updated... 15.09.01

' The program denonstrates sone control features of the LCD
' driver PCF2116 from Phili ps.

Sone subroutines used in this program
' cane fromH Paul Roach, MU, May 3, '97

' 29.12.97: Version 1.0
' 15.09.01: Version 1.1

————— [Constants J---------c-oommmmome e

SDAPI N con 14
SCLPI N con 15
TSTPI N con 0
ar con 1
IN con O

PCF2116 con $74

CTRL con $80
WRTDTA con $40

CLRSCR con 1

Dl SPON con $0C
LFTSHFT con $18
RGITSHFT con $1C
MODE con $3E

Chapter 3: Enhanced I/0 149

LI NE1 con $80
LI NE2 con $A0
LI NE3 con $Q0

del ay con 1

————— [Variables J----------ccmmommmn e
SDACUT var out 14
SDAI N var inl4

SDADI R var diril4
SCLAUT var out 15

devi ce var nib ' device 0-1

obyt e var byte ' byte to send to device

i byte var byte ' byte received from device
dbyt e var byte

n var byte ' index

i var byte ' index

addr var byte ' text location in EEPROM
b var bit " bit

SCLDR = IN
SDADIR = IN

1
o

devi ce setting of SAO
EEPROM I ni ti al i zati on

textl DATA "LCD Control ", 0

text2 DATA "w th PCF2116", 0

text3 DATA "and Stanpll.", 0

| ow TSTPI N

gosub bl i nk

debug ">>>>> | nit LCD', CR

gosub initlcd

pause 500

debug ">>>>> Wite Text to LCD', CR
gosub outtextl

gosub outtext 2

gosub outtext3

debug ">>>>> Shift Display R ght", CR
for i=1to 20

150 Chapter 3: Enhanced I/O

gosub shi ftrght
pause 200

next

pause 1000

debug ">>>>> Shift Display Left", R

for i=1 to 20
gosub shiftleft
pause 200

next

pause 5000

goto main

end

BT [Subroutines J------------m-mmmmm
initlcd
gosub start
obyte = PCF2116 | (device <<1) : gosub send
T .

obyte = CTRL : gosub send
obyte = DI SPON: gosub send
obyte = CTRL : gosub send
obyte = CLRSCR: gosub send
obyte = CTRL : gosub send
obyte = MDDE : gosub send
gosub sstop

return

shiftleft

gosub start

obyte = PCF2116 | (device <<1) : gosub send
obyte = CTRL : gosub send

obyte = LFTSH-T: gosub send

gosub sstop

return

shi ftrght
gosub start
obyte = PCF2116 | (device <<1) : gosub send
obyte = CTRL : gosub send
obyte = RGISH-T: gosub send
gosub sstop
return

outtextl
gosub start
obyte = PCF2116 | (device <<1) : gosub send
obyte = CTRL : gosub send
obyte = LINEL : gosub send
obyte = WRTDTA : gosub send

addr = textl
repl:
read addr, dbyte
if dbyte = 0 then endl

obyte = dbyte : gosub send
addr = addr+1
goto repl
endl:
gosub sstop
return

outt ext 2
gosub start
obyte = PCF2116 | (device <<1) : gosub send
obyte = CTRL : gosub send
obyte = LINE2 : gosub send
obyte = WRTDTA : gosub send

addr = text2
rep2:
read addr, dbyte
if dbyte = 0 then end2
obyte = dbyte : gosub send
addr = addr+1
goto rep2
end2:
gosub sstop
return

outtext3
gosub start
obyte = PCF2116 | (device <<1) : gosub send

obyte = CTRL : gosub send
obyte = LINE3 : gosub send
obyte = WRTDTA : gosub send
addr = text3

rep3:

read addr, dbyte
if dbyte = 0 then end3
obyte = dbyte : gosub send
addr = addr+1
goto rep3
ends3:
gosub sstop
return

i nbyte ' fetches 8 bits, MSB first
SDADI R=I N i nput

i byt e=0

for n=0 to 7

pause del ay
hi gh SCLPI N ' clock high
pause del ay

ibyte=(ibyte << 1) | SDAIN ‘read bit and or

Chapter 3: Enhanced I/0 151

152 Chapter 3: Enhanced I/O

‘with prev
debug dec SDAIN
| ow SCLPI N
next

SDADI R=CUT ' out put
return

out byt e ' output obyte, MSB first
| ow SDAPI N
for n=0 to 7
b= (obyte >>7) &1
if (b=1) then outone
SDADI R=QUT
debug "0"
_clk: hi gh SCLPI N
pause del ay
| ow SCLPI N
pause del ay
obyt e=obyte << 1
next
debug " "
return

out one
SDADI R=I N
debug "1"
goto _clk

nack
SDADI R=CUT ' bring SDA high and cl ock
hi gh SCLPI N
| ow SCLPI N
return
send
gosub out byte
gosub nack
return

start
| ow SCLPI N
SDADI R=I N ' SDA at |ogic one
hi gh SCLPI N
| ow SDAPI N
SDADI R =QUT " bring SDA | ow while clock is high
| ow SCLPI N
debug "START", CR
return

sstop
| ow SCLPI N
SDADI R=QUT
hi gh SCLPI N

Chapter 3: Enhanced I/0O 153

SDADI R=I N ' bring SDA high while clock is high
debug OR "STCP", CR
return

bl i nk
toggle TSTPIN
pause 200
toggl e TSTPI N
return

Listing 6 Test Program (12C_LCD.BS2)

The commands used for controlling the LCD module are defined as constants.
In the main code area you can find the various program activities as subroutine calls.

At the beginning of the program a test pin is toggled. Connect a LED with a resistor in series
to this pin and this LED will signalize the initialization of the LCD module. Most LCD controllers
need some time for that initialization so the 500 ms pause is included to provide this delay.

After the LCD is initialized three strings are sent. The subroutines out t ext 1 etc. are identically
functional. After setting the right address in the display RAM routine the single characters are
read from EEPROM and sent to the LCD module. After reading the string terminator (ASCII 0)
the read cycle is finished.

After displaying all three text lines in the LCD, the shifting commands (<< or >>) scroll the
whole content to the right and to the left afterwards.

Several debug messages explain the state of the running program using the Debug Window.
The characters sent to the LCD are displayed in binary format in the Debug Window. This way
you can compare these characters with the instruction table of the LCD controller.

The program 12C_LCD.BS2 serves as a simple demonstration. To use parts of this program in
an application, it is helpful to know which resources of the BASIC Stamp are used.

To get an overview of the resources used, Figure 31 shows a memory map. More than a half
of the available memory remains free. There is plenty of room to add code for a real
application.

154 Chapter 3: Enhanced I/O

Memory Map - EEPROM 45% Full (0:Untitled1) — |EI|£|
Detailed EEPROM Map RAM Map

S[ERHEEEEEEEEDEFT . e —————

QL LD Lential dwit | grs

00fh PCF211E1 and St DiRs:

[T S T Y (T T T B B O REGD: I

030] REGT: (IS

040 REGZ: (IS

0501 REGS: DI [T T [TT[TT[]

60 REGS [TITITITTITTITTIITTT1]

070 REGE: [T T TTTTTTTTTTITTT]

=—— REGE: LT TTTTTTTTTTTTTT]

080/ REG7: CIT T I T T T T T T TTTT1]

030 REGE: [TITITITTTITTITTIITTIT1]

|00 REGE: [T TTTTTTTTTTTTTT]

0EQ REGIGCLCTI T TTTTTTTTTTITTT]

ocol REGI:LI T T T TTTTTTTTITTT]

00 REGIZCI T I I T I I T ITTIITTIT1]

0ED Condensed

ﬁ EEPROM Map Source Code

100] D:Untitled] |

m EPROM Legend

1201 B - Undef. Data

1130 [-Def. Data

140 B - Program

ﬁ [- Uruged

|1E0]

170] hd

Figure 31 Memory Map

3.2 1-Wire Interface

3.2.1 Some Basics

The 1-Wire Interface connects several so-called 1-Wire Devices to a simple network
(MicroLAN).

The interface is built using a two-wire connection (DATA and GND). The pull-up resistor is
required as it guarantees the high state. A bus master is responsible for controlling the serial
bit stream.

Figure 32 shows the drivers of bus master and slave in a 1-Wire network.

Chapter 3: Enhanced I/0O 155

BUS MASTER é SLAVE 1-WIRE PORT
47K

e

LY

100 OHM
MOSFET

zu
weiteren
Slaves

Figure 32 Bus Master and Slave in a 1-Wire network

In an interface using such simple hardware connections the complexity and reliability must
rely on software protocols.

Due to the reduced current consumption of the CMOS devices it is possible to power the 1-
Wire device in short communication breaks of high signals. The 1-Wire device saves enough
energy for running the data exchange until then next charge.

The serial data exchange is half-duplex at discrete time slots.

Acting as the bus master, the BS2p starts the communication by sending a command to the
connected 1-Wire device(s). Commands and data will be sent bit by bit starting with the LSB.

A steep rise on the data line by the master synchronizes the master and slave(s). A certain
time after this rise (30 us is standard) the data line is polled depending of the transmission
direction from master or slave to read a bit of information (sample time).

This mode is known as data transmission in time slots. Each time slot is synchronized by a
sharp high/low edge of the master. Therefore, pauses in the bit stream do not generate errors
or other problems.

A data exchange can start after connecting to a 1-Wire device. The 1-Wire devices are not
always easy to connect to due to package types. We will come back to this point very soon.

Several microseconds after the connection the 1-Wire device pulls the data line to GND to
show the bus master the connection and the waiting for a command. This presence pulse can
be requested by the master by sending a reset pulse.

156 Chapter 3: Enhanced I/O

Figure 33 explains the timing briefly. The BS2p hides the details for the programmer, so it is
very easy to use the 1-Wire interface in an application.

But you can see too, that only the BS2p’s commands OAOUT and OW N are able to manage this
kind of data exchange. A programmed solution with the other types of the BASIC Stamps is
not even possible!

Write-OneTime Slot

/

Write-Zero Time Slot

Read-One Time Slot

e

.............] Read-One Time Slot

Figure 33 Timing Read/Write Operation

Figure 33 shows the activities of the master with a straight, thick line. Each write or read
operation begins with a falling edge of the master followed by a low pulse of about 15 ps.

For writing a “0” the master holds the data line to ground. For writing a “1” the master will be
passive and the pull-up resistor pulls the data line high.

Reading data is quite similar. If the slave sends a “0” to the master then the slave holds the
data line to GND. This phase is marked by a dotted, thick line. If the master reads a “1” then
the slave is passive and the pull-up resistor generates the high level.

3.2.2 1-Wire Devices

After understanding the basics of the data exchange between the bus master and the slave
it's helpful to know something about the 1-Wire devices.

Dallas Semiconductor created the iButtons™ and 1-Wire® Chips, all equipped with the 1-Wire
interface.

The iButtons are devices in stainless steel package referred to as “MicroCan”. These iButtons
look more like a big steel horse pill rather than an integrated circuit. Figure 34 shows an
iButton.

Chapter 3: Enhanced /0 157

Figure 34 iButton

The MicroCan protects the iButtons as packaging against external influences and is used as
electrical contact at the same time. Numerous connection opportunities exist. One is the
iButton Mounting Clip for printed circuit boards (Figure 35). Parallax’'s BS2p24 Demo Board
has such a clip installed.

GROUND

5 T
ULJ DATA

Figure 35 iButton Mounting Clip

Most chips used in iButtons are available as conventional integrated circuits in a plastic
package. As we speak about iButtons in the following examples these statements are valid for
all 1-Wire devices.

Each iButton and each 1-Wire device have a unique 6-Byte identification number (serial
number) saved in a laser-programmed ROM area. The family code indicates the device type.
The family code and the serial number describe each 1-Wire device unequivocally.

The ROM area has the same format in all 1-Wire devices. Byte 0 contains the family code
describing the device type. Bytes 1 to 6 contain the unique serial number. Byte 7 contains a
CRC-8 check sum usable for testing the correctness of the data transmission.

158 Chapter 3: Enhanced I/O

B7 B6 |B5 |B4 [B3 |[B2 |B1 [BO
CRC-8 | Serial Number Family Code

The next table shows an overview to the types of iButtons. The number of 1-Wire devices in
plastic packages is more extensive yet.

Family
Code

DS1990A O0O1H -

DS1991 02H 512 Bit NVRAM 3 x 384 Bit protected NVRAM
DS1992 08H 1 KBit NVRAM

DS1993 06H 4 KBit N\VRAM

DS1994 04H 4 KBit NVRAM RTC, Interval ltimer, Cycle counter
DS1995 OAH 16 KBit NVRAM

DS1996 OCH 64 KBit NVRAM

DS1982 0O9H 1 KBit EPROM

DS1985 OFH 16 KBit EPROM

DS1986 0OBH 64 KBit EPROM

DS1920 10H 16 Byte EEPROM Temperature sensor

IButton Memory Special Features

For a better understanding of the following application examples we’ll explain the most
important features of the iButtons we’ve decided to use. Pay close attention yet understand
that this explanation can not replace the data sheet.

You can find all required data at www.ibutton.com respectively dbserv.maxim-ic.com/1-
Wire.cfm.

3.2.2.1 DS1990A

The DS1990A is a serial number iButton containing the 64-Bit ROM and was designed
exclusively for identification purposes.

3.2.2.2 DS1994

The DS1994 is a more complete device containing 4-Kbit non-volatile RAM (NVRAM) and
three counter/timers (RTC, interval timer, cycle counter) besides the 64-Bit ROM.

The 4-Kbit NVRAM are organized in 16 pages of 256 bits each. The data exchange happens
via a Scratch Pad RAM of 256 bits. The counter/timer registers are mapped in the 16" page.

http://www.ibutton.com

Chapter 3: Enhanced /0 159

The next diagram shows the memory organization in the DS1994 device.

| Scratch Pad RAM |

Page 0 00004
Page 1 0020,
Page 2 00404
Page 3 00604
Page 4 00804
Page 5 00AOQy
Page 6 00COy
Page 7 OOEOy
Page 8 01004
Page 9 0120,

Page 10 01404 Status Regiser 02004
Page 11 01604 Control Regiser 02014
Page 12 01804 Real-Time Counter Registers 02024
Page 13 01A04 Interval Time Counter Registers 02074
Page 14 01CO04 Cycle Counter Registers 020Cy
Page 15 01EOy Real-Time Alarm Registers 02104
Interval Time Alarm Registers 0215

| Page 16 0200 .l Cycle Alarm Registers 021A4

The bits of the status and control register are named as follows:

B7 B6 B5 B4 B3 B2 Bl BO
Status ; ; JICCE NTE /RTE CCF ITF RTF
Register

Control STOP AUTO

Register DSEL /ISTART /MAN OSC RO WPC WPl WR

In the status register are the interrupt enable bits and the alarm flags for the three
counter/timers while the bits in the control register control the operation of the device.

The RTC is a 5-Byte binary counter incremented 256 times per second. The low byte counts
the parts of a second. The other four bytes count the seconds. This way the counter contains

160 Chapter 3: Enhanced I/O
the number of seconds passed from a reference point defined by the user. An overflow
happens after 136 years.

The interval timer operates in a similar fashion but has two different modes controlled by Bit 5
of the control register.

In the AUTO Mode the interval timer starts after the data line was pulled high for a time
defined by Bit 7 (DSEL) of the control register. The interval timer stops after pulling the data
line low for the same time.

If DSEL = 1 the time is 123 +/- 2 ms. If DSEL = 0 the time is reduced to 3.5 +/- 0.5 ms.

In MAN mode the time measurement is started and stopped by Bit 6 (STOP /START) of the
control register.

The cycle counter contains only four bytes. It increments with a falling edge on the data line if
the timing defined by DSEL is kept.

The other bits of the control register determine the write protection for the three counter/timer
(WPR, WPI, WPC) and move the DS1994 into the Read-Only Mode (RO) and
activate/deactivate the oscillator (OSC).

3.2.2.3 DS1920

The DS1920 is an iButton for temperature measurement in a range of -55 °C to 100 °C with a
resolution of 0.5 °C.

The measured temperature value has an internal resolution of 9 Bits according to the next
table.

Temperature Binary Value Hex Value
+100°C 0000000011001000g 00C84
+25°C 0000000000110010g 00324
+1/2°C 00000000000000015 00014
+0°C 0000000000000000g 00004
—1/2°C 1111111211111111,4 FFFF,
—-25°C 111111121110011105 FFCEy
—55°C 111111121100100105 FF92,

The Scratch Pad RAM supports the data exchange again and the temperature levels are
saved non-volatile in an EEPROM. Figure 36 shows a block diagram of the DS1920 device.

DQ

INTERNAL ¥pp

64-BIT ROM

AND
1-WIRE PORT

POWER
SUPPLY
SENSE

Chapter 3: Enhanced I/0 161

MEMORY AND

CONTROL LOGIC

3

r
*| TEMPERATURE SENSOR
SCRATCHPAD
~ HIGH TEMPERATURE
TRIGGER, TH
3
LOW TEMPERATURE
TRIGGER, TL
&-BIT CRC
GENERATOR

Figure 36 Block diagram of DS1920

The next table explains the contents of RAM and EEPROM:

RAM

Temperature LSB
Temperature MSB
TH/User Byte 1
TH/User Byte 2
Reserved
Reserved

Count Remain
Count per °C
CRC

Byte EEPROM

0

1

2 TH/User Byte 1
3 TH/User Byte 2
4

5

6

7

8

If the measured temperature value exceeds the level TH or falls short of the level TL an alarm

flag is set.

To exploit the accuracy of the DS1920 you can process the following steps:
Reading the temperature value and clearing the LSB (TEMP_READ)
Reading the internal counter (COUNT_REMAIN)

162 Chapter 3: Enhanced I/O

Reading the Counts/°C (COUNTS_PER_C)

Calculation of the temperature value according to the formula:

COUNT _PER_C-COUNT _REMAIN

TEMPERATURE = TEMP _READ - 0.25 +
- COUNT _PER_C

3.2.3 Access to iButtons

The access to all iButtons is organized similarly to the 1ISO/OSI-Model. But, not all layers of
this model are implemented. The following table shows the existing layers for the iButtons:

ISO/OSI-Model iButton
Application Layer No
Presentation Layer Yes
Session Layer No
Transportation Layer Yes
Network Layer Yes
Link Layer Yes
Physical Layer Yes

The Physical Layer defines the electrical conditions, logic levels, and the timing for all 1-Wire
devices.

The basic functions of 1-Wire communication including Reset, Presence Detection and Bit
transfer are defined in the Link Layer.

In the Network Layer the serial identification of the 1-Wire devices is carried out. The
commands of this layer point to ROM exclusively and are therefore named as ROM
Commands.

Chapter 3: Enhanced I/0O 163

ROM COMMANDS

Reads the complete ROM content (only

Read ROM possible with a connected iButton)
Match ROM Addresses an iButton according to the 64-Bit
ROM content
The i i i i
Skip ROM Skip addressmg (only possible with a
connected iButton)
Search ROM Search for an iButton in a network

Search for iButtons (DS1920) in a network,
which notify an alarm

Transport Layer is responsible for the data exchange out of the ROM area. The next table
shows a selection of the available Memory Commands:

Alarm Search

MEMORY COMMANDS
Convert Temperature Starts the temperature measurement
Read Scratch Pad Reads all bytes from Scratch Pad Memory
Write Scratch Pad Saves the temperature levels into the Scratch
Pad Memory
Copies the temperature levels into the
Copy Scratch Pad EEPROM

Copies the temperature levels back to
Scratch Pad Memory

Read Power Supply Queries the power supply

Recall EE

The next application examples will demonstrate how to organize access to the iButtons.

3.2.4 Identification of iButtons

Each iButton can be identified according to it's ROM data. Before reading the ROM content
the iButtons must be connected to the BS2p.

The first program example periodically queries the 1-Wire interface for an iButton connected
to I/O pin 15. Listing 7 shows the source of the program 1WIRE_ID.BSP.

164 Chapter 3: Enhanced I/O

If no iButton is found the message “No 1-Wire device present” is displayed in the Debug
window and after a pause the whole process repeats. Figure 37 shows this message in the
Debug Window.

=10l %]

-Ffﬁ?Dehug Terminal #1
Ciom Port: Baud R ate: Fariby:

[comt =] feeoo = [Nere 7]

[1ata Bits: Flow Control: @ ™ [~ DIR [RTS

2 = [0f | ¢mx ®oDsA ecrs

=
Nao 1-Wire dewice present. u
||

Capture... | Macro Keys... FPauze Cloze |

Figure 37 No iButton connected

If an iButton was found then the program reads it's ROM content and displays it in the Debug
Window as a hex dump. Afterwards a CRC-8 Check calculates the CRC over all read bytes
except for the CRC byte. The data exchange was faultless if the calculated and read CRC are
equal. Figure 38 shows the hex dump of the ROM content and the calculated CRC-8. For
completeness only, the message “CRC OK” marks the verified CRC.

Debug Terminal #1

Com Part: Baud R ate: Parity:

Chapter 3: Enhanced /0 165

=13l x|

fcomt 7] Joeoo =l [mene F
[Data Bits: Flow Cantrol:
@ 7% [~ DTR I~ ETS
E otz e mx e ose e cis

Capture... | Macn:uKe_l,ls...l I Cloze |

o0 00 CIx

Figure 38 Hex dump of ROM content

" File...... Iwire_id. bsp
' Purpose... Reading Fam |y Code and Serial Nunber for
! Identification

Author.... daus Kuehnel

BT [Drectives J-------------mommmommmm oo

ONpi n con 15 "l-wire device pin
ONFERSt con %9001 'Front -End Reset
ONBERSt con %9010 ' Back- End reset
OMBi t Mode con %9100

ReadROM con $33 ' Read ROM Command

Sear chROM con $FO ' Search ROM Conmand

166 Chapter 3: Enhanced I/O

NoDevi ce con %1

i dx var byte
ROVDat a var byt e(8)
val ue var byte
CRC var byte
i ndex var byte
i var byte

devcheck var nib

BT [Initialization]------

init: pause 1000
- [Main Code]-----------
nai n:

debug cl s

gosub devi cecheck

' No devi ce present

i f (devcheck <> NoDevi ce) then di spl ayRCM

NoDevi ceFoand:

debug "No 1-Wre device present."

pause 1000
goto main

di spl ayROM

debug "Dallas 1-Wre ID "

[ReadROM
[str ROMVDat a\ 8]

owout OMNpi n, ONFERSt,
owin OWin, ONBERSt,
CRC =0

for id« =0to 7

' Read ROM Dat a

‘D spl ay RCM Dat a

debug hex2 ROMData(idx), " "

next
for idx =0to 6

val ue = ROVDat a(i dx)

gosub CRC8
next

debug cr, "CRC = ",

nxt: debug cr, "CRC &K "
nxt 1: pause 1000
goto main

devi cecheck:
devcheck = 0
owout OMNpi n, ONFERSt,

'Calculate CRCG-8

hex2 CRC
if CRC = ROVData(7) then nxt
debug cr, "CRC not OK " :

' Check CRGC-8

goto nxtl

"Check if any 1-Wre Device is connected

[Sear chROM

Chapter 3: Enhanced /0 167

owin OWin, OMNBitMde, [devcheck.bitl, devcheck. bitO]
return

CRC8: "Cal culate next CRG-8 fromtable
restore
index = CRC ~ val ue
for i = 0 to index
read i, CRC
next
return

data 0, 94, 188, 226, 97, 63, 221, 131, 194, 156, 126, 32, 163, 253, 31, 65

data 157, 195, 33, 127, 252, 162, 64, 30, 95, 1, 227, 189, 62, 96, 130, 220

data 35, 125, 159, 193, 66, 28, 254, 160, 225, 191, 93, 3, 128, 222, 60, 98

data 190, 224, 2, 92, 223, 129, 99, 61, 124, 34, 192, 158, 29, 67, 161, 255

data 70, 24, 250, 164, 39, 121, 155, 197, 132, 218, 56, 102, 229, 187, 89, 7
data 219, 133, 103, 57, 186, 228, 6, 88, 25, 71, 165, 251, 120, 38, 196, 154
data 101, 59, 217, 135, 4, 90, 184, 230, 167, 249, 27, 69, 198, 152, 122, 36
data 248, 166, 68, 26, 153, 199, 37, 123, 58, 100, 134, 216, 91, 5, 231, 185
data 140, 210, 48, 110, 237, 179, 81, 15, 78, 16, 242, 172, 47, 113, 147, 205
data 17, 79, 173, 243, 112, 46, 204, 146, 211, 141, 111, 49, 178, 236, 14, 80
data 175, 241, 19, 77, 206, 144, 114, 44, 109, 51, 209, 143, 12, 82, 176, 238
data 50, 108, 142, 208, 83, 13, 239, 177, 240, 174, 76, 18, 145, 207, 45, 115
data 202, 148, 118, 40, 171, 245, 23, 73, 8, 86, 180, 234, 105, 55, 213, 139
data 87, 9, 235, 181, 54, 104, 138, 212, 149, 203, 41, 119, 244, 170, 72, 22
data 233, 183, 85, 11, 136, 214, 52, 106, 43, 117, 151, 201, 74, 20, 246, 168
data 116, 42, 200, 150, 21, 75, 169, 247, 182, 232, 10, 84, 215, 137, 107, 53

Listing 7 1-Wire Identification (IWIRE_ID.BSP)

The program begins with some definitions of constants to make the source more readable.
Among the different modes of operation you can find the used ROM commands there.

Other than some variables we have defined an array of eight bytes to save the read ROM
content temporarily.

The device check is the first action with the iButton. This is the check for a connected iButton.

After a Reset we send the Search ROM command to the iButton and switch to Bit Mode after
that. A connected iButton sends the True and False value of the LSB in ROM in succession.
This means, if there is no iButton connected both bits will be high.

If no iButton is detected, the Debug Window displays the appropriate message.

If an iButton is detected, we send the Read ROM command and read the eight byte ROM
content and save it in the array ROMData.

168 Chapter 3: Enhanced I/O

As mentioned already, next follows the hex dump, calculation of the CRC-8 value and display
of the CRCs in the Debug Window.

The CRC-8 procedure is quite simple. In this program example we use a table-based
procedure. The variable val ue hands over the byte to be processed by the subroutine CRC8.
After passing all bytes to be considered to the subroutine CRC8 the variable CRC holds the
calculated CRC-8 value. A compare of this calculated value with the delivered CRC-8 value
(Byte 7 of the ROM content) decides the validity of the read ROM content.

3.2.5 Access Control with iButtons
In the next program example we present a system for access control.

The iButtons we used can be assembled with mounting material for easy handling. Figure 39
shows an iButton in a key holder, while Figure 40 shows an iButton fixed in a printable
identification card (Batch).

Figure 39 Key Holder Figure 40 ID Card

To connect an iButtons we can use the hand-grip shown in Figure 41. You can connect this
hand-grip directly to the Parallax BS2p Demo Board.

Chapter 3: Enhanced I/0 169

HAND-GRIP MOUNT
DS9092GT

Figure 41 Hand-Grip

Before we explain the program itself have a look to the messages in the Debug Window. An
LCD connected to the BS2p could handle the same display for product portability.

Figure 42 shows the request to connect the batch. As long as no batch is connected the
request to connect is sent repeatedly.

=101 x|

/ Debug Terminal #1 .
Coam Part: Baud Hate: Parity:
fcomt =] Joseoo =P [Mone 7

[rata Bits: Flawe Cantrol: @ T< [~ DIR [RTS

E = I =zl @ mx e DsR e o3

Fausze Cloze |

[Capture... |

Figure 42 No Batch detected

170 Chapter 3: Enhanced I/O

Figure 43 shows that a batch is now connected. After reading the ROM content we output a
hex dump to verify. Afterwards we search the database for the read identification. The
displayed stars (*) visualize the search of the database. In this case the data base had no
entry for the read iButton and the subject batch was not accepted.

#37Debug Terminal #1 -0l x|
Ciom Port: Baud R ate: Fariby:
[comt =] feeoo = [Nere 7]

D ata Bits: Flaw Contral: @ ™ [~ DIR [RTS

2 =l [of =l eEx @Dsr ®cCrs

12 00 00 00 Ch

Cloze |

Figure 43 Batch read and not accepted

Capture... | Macro Keys...

Figure 44 shows the reading of a further batch. After the hex dump the database search starts
again. You can see a finished search after the output of the first star because an iButton was
found.

Chapter 3: Enhanced I/0 171

=13l x|

Debug Terminal #1
Com Part: Baud R ate: Parity:
fcomt 7] Joeoo =l [mene F
[ata Bite: Flaws Control: @ 1< [DTR [RTS
e =zl Jot =] ¢mx eoDsR ecis

Connect your batch, please.

2 04 4B 7F 49 00 00 00 O

Capture... | tacro Keys.. FPause Cloze |

Figure 44 Batch read and accepted

A comparison of the outputs in the Debug Window with the source code in Listing 8
(ID_CHECK.BSP) makes the procedure clear.

We connect the iButton to I/O pin 15 as in the last program example and a LED with additional
resistor from 1/O pin 12 to GND.

BT [Title J------cmmmmmm e
File...... I D_check. bsp

' Purpose... Check a 1-wire identity agai nst stored |Ds

' Author.... daus Kuehnel

' Started... 2001-07-24
Updat ed. . .

BT [Drectives J-----------mmmommmme oo

172 Chapter 3: Enhanced I/O

ONpi n con 15
LED con 12
ONFERSt con %9001
ONBERSt con %9010
ONBi t Mbde con %9100
ReadROM con $33
Sear chROM con $FO
NoDevi ce con %1
I Ds con 5
————— [Variables]-----

i dx var byte
i ndex var byte
ROVDat a var byte(8)
1D var byte
val ue var byte
devcheck var nib
I Dtrue var bit
B [Initialization]
init:

pause 1000

hi gh LED
BT [Main Code]-----
mai n

IDtrue = 0

debug cl s,

gosub devi cecheck

"1-wire device pin
' LED

' Front - End Reset

' Back- End reset

' Read ROM Command

' Search ROM Conmand
'No devi ce present

' Nunber of stored | Ds
"I ndex vari abl e

'"RCM Data fromi Button
"Stored ID (0 to | Ds-1)

'Result of Device Check
'Result of | D Conpare

' Open debug w ndow
'LED On

"Connect your batch, please.", cr

i f (devcheck <> NoDevi ce) then readi Button

NoDevi ceFoand:

debug "No batch present."

pause 1000
goto main

readi But t on:
gosub t oggl eLED
debug "Reading...",
debug "Dallas 1-Wre
owout OWNi n, ONFERSt
owin OWMin, ONBERSt
gosub di spl ayROVDat a
debug cr, "Search in
gosub searchl D

cr

"

I D

, [ReadROM
, [str ROVDat a\ 8]

Dat abase. . .

if IDtrue then checkXX

pause 1000
goto main
checkCk:

debug cr, "ID foand."
for idx = 0 to 10
gosub toggl eLED

next

pause 1000
goto main
end

devi cecheck:
devcheck = 0
owout OWNi n, ONFERst, [SearchROV

owin ONiIn, OMNBitMde, [devcheck.bitl, devcheck. bitO]

return

di spl ayROVDat a
for idxk =0to 7
debug hex2 ROVData(idx), " "
next
return

sear chl D
restore
ID=0
nxt:for idx =0to 7
read | D+ dx, val ue

if value <> ROMDat a(i dx) then nextl|D

next
IDtrue = 1l:return

next | Dt
ID=1D+ 8 'Next stored ID
if ID<=1Ds * 8 then repeatcheck
IDtrue = 0
debug cr, "ID not foand."
return

r epeat check:
debug "*"
goto nxt

t oggl eLED:
toggl e LED
pause 100
toggl e LED
pause 20
return

Chapter 3: Enhanced I/O 173

174 Chapter 3: Enhanced I/O

data $10, $37, $84, $11, $00, $00, $00, $FO
data $04, $4B, $7F, $49, $00, $00, $00, $08
data $10, $37, $84, $11, $00, $00, $00, $F2
data $10, $37, $84, $11, $00, $00, $00, $FO
data $10, $37, $84, $11, $00, $00, $00, $FO

Listing 8 Access Control (ID_CHEK.BSP)

The program itself is quite similar to the last program example. The data exchange with the
iButton is practically identical. We do not calculate the CRC-8 here.

The subroutine sear chl D is the new part of this program. We save the ROM content read
from the iButton into the array ROVDat a. This ROM content is compared byte by byte with the
identification numbers saved in EEPROM.

If there is a mismatch in one byte the next identification number is tested. The test repeats
until a match is found or all identification numbers are checked against a match.

After a first match of the read ROM content (all eight bytes) with an entry in the database we
exit the subroutine.

Figure 44 showed a successful identification of the connected iButton. Compare the displayed
Hexdump of the ROM content with the entries of the data base and you see the match for the
seconds entry of the data base and the second identification number.

You can enhance the number of identification number with respect to the available memory.
The constant | Ds must be reflect the number of data base entries.

3.2.6 Measuring of Temperature with DS1920

Using the DS1920 iButton temperature measurement is quite simple.

The following program example implements a periodic temperature measurement with a
DS1920 iButton connected to the mounting clip installed on the BS2p Demo Boards.

The program itself consists of one single loop which the temperature measurement initializes
and reads the result, stores the temperature measurement in Scratch Pad RAM and displays
the value. An LED signalizes the moment of the temperature measurement. Listing 9 shows
the source of the program DS1920.BSP.

Chapter 3: Enhanced I/O 175

" File...... ds1920. bsp

' Purpose... Measuring of Tenperature with DS1920 i Button
' Author.... daus Kuehnel

' Started... 2001-08-11

' Updat ed. . .

' This program denonstrates the periodi c neasuring of anbient
' tenperature with DS1920 i Button and cal cul ati on of high-
' resolution tenperature value in degree C

BT [Drectives J-----------m-mmmmme e

ONpi n con 15 "1l-wire device pin
LED con 12 "Pin for LED
ONFERSt con %9001 " Front - End Reset
ONBERSt con %9010 ' Back- End reset

ONBi t Mode con %9100

Ski pROM con $CC ' Ski p ROM Conmrand
ReadScratch con $BE 'Read Scratch Pad
Conver T con $44 ' Convert Tenperature

tenp var word ' Tenper at ure Val ue
CRem var byte ' Count s renai ni ng val ue
CPer C var byte "Counts per degree C val ue

init:

pause 1000 ' open debug wi ndow

| ow LED ' LED of f
BT [Main Gode J--------------c-mmmmm oo
Start:

' Send Convert Tenperature conmmand

OMUT OMNi n, ONFERst, [Ski pROM ConverT]
hi gh LED

debug cl's

176 Chapter 3: Enhanced I/O

CheckFor Done:
‘Wit until conversion is done
pause 25
ON'N ONi n, OMBi t Mbde, [Tenp]
' debug bin tenp 'uncomment to see conversion tine

IF Tenp = 0 THEN CheckFor Done

' Send Read Scratch Pad command

ONUT ONpi n, ONFERst, [Ski pPROM ReadScr at ch]

ON'N ONi n, ONBERSt, [Tenp.|owbyte, Tenp. hi ghbyt e, CRem CRem CRem CRem CRem CPer C]
debug cr, "Tenperature count (0.5°C) is ", dec Temp

"Calcul ate tenperature in degrees C
Tenp = Tenp>>1*100- 25+((CPer C*100- (CRent 100)) / CPer C)

debug cr, "Actual Tenperature is ", DEC Tenp/ 100, ".", DEC2 Tenp-(Tenp/ 100*100), "
c, R

| ow LED

pause 5000 'next neasurenent in 5 sec

goto Start

Listing 9 Periodic Temperature Measurement (DS1920.BSP)

The commands and I/O definitions are handled in the constants section. Because we are
working with only one iButton, we can skip the SkipROM and the ROM Handling commands.

The Convert Command starts the temperature measurement. Afterwards the iButton is
queried until the read bit goes from low to high. This edge signalizes the end of the
temperature measurement. The result of this temperature measurement is saved in the
Scratch Pad RAM and can be read now.

We read all eight memory cells of the Scratch Pad RAM. But, only the first and the last cells
are of interest in this example.

To exploit the full accuracy of the temperature measurement we calculate the temperature
value by the formula given in Chapter 3.2.2.3.

Figure 45 shows the read temperature count with a resolution of 0.5 °C and the calculated
temperature value.

Chapter 3: Enhanced I/O 177

=13l x|

Debug Terminal #1
Com Part: Baud R ate: Parity:
fcomt 7] Joeoo =l [mene F

[ata Bite: Flaws Control: @ ™% [~ DTR [RTS

E otz e mx e ose e cis

FPause Cloze |

Capture... |

Figure 45 Result of Temperature Measurement

3.2.7 External Memory with DS1994

We explained the memory organization in Chapter 3.2.2.2. The following program example
shows reading and writing the memory via Scratch Pad.

The construction of the program and the parts connected to the BS2p are identical to the last
program examples. Listing 10 shows the source of the program DS1994 MEM.B2P.

BT [Title J------cmmmmmm e
"File...... ds1994 nem bsp
' Purpose... Storing data in Menory of DS1994 i Button
' Author.... daus Kuehnel
' Started... 2001-08-11
Updat ed. . .

Thi s program denonstrates the witing and readi ng DS1994
' menory via the internal Scratch Pad RAM

2001-08-11

178 Chapter 3: Enhanced I/O

O n con 15 '1-wire device pin

LED con 12 'Pin for LED

ONFERSt con %001 ' Front - End Reset

ONBERSt con %9010 ' Back- End reset

OB t Mbde con %9100

Ski pROM con $CC ' Ski p ROM Command
WiteScratch con $0F 'Wite Scratch Pad
ReadScratch con $AA 'Read Scratch Pad
CopyScratch con $55 ' Copy Scratch Pad to Menory
ReadMenor y con $FO ' Read Menory

cTar get Addr con $0077 ' Target Address in Menory

T [Variables J-----------------cmomimi e

Tar get Addr var word

TAL var Target Addr. LowByt e
TA2 var Target Addr. H ghByt e
Endi ngAddr var byte

tenp var byte(8)

i dx var nib

init:

pause 1000 ' open debug w ndow

| ow LED ' LED of f
- [Maiin Code J------------------mommim i
Start:

‘"Initialize array
for id« =0to 7
tenp(idx) = idx +$30
next
debug cls,"Array contains ", str tenp\8, cr

Tar get Addr = cTar get Addr
debug "TA ", hex2 TA2, hex2 TAl, cr

'Wite array to Scratch Pad RAM
hi gh LED
debug "Wite to Scratch Pad RAM..", cr

Chapter 3: Enhanced I/0 179

ONMUT OMNin, ONERst, [SkipROM WiteScratch, TAL, TA2, str tenp\8]
| ow LED

"dear array
debug "d ear ScrachPad RAM..", cr
for idx =0to 7
tenp(i dx) = $96
next
debug "Array contains ", str tenp\8, cr

'Read Scratch Pad RAM and save back into array

debug "Read Scratch Pad RAM..", cr

ONUT OMNi n, ONFERst, [Ski pPROM ReadScr at ch]

ON'N Oni n, ONBERst, [TAl, TA2, Endi ngAddr, str tenp\8]

debug "TA ", hex2 TA2, hex2 TAl, cr
debug "EA ", hex2 Endi ngAddr, cr
debug "Data: ", str tenp\8, cr

"Cear array again
debug "d ear ScrachPad RAM..", cr
for idx =0to 7
tenp(idx) = $96 ' any bit pattern
next
debug "Array contains ", str tenp\8, cr

' Copy Scratch Pad to Menory

debug "Copy Scratch Pad to Menory...", cr

ONUT OMNi n, ONERst, [Ski pROM CopyScratch, TAl, TA2, Endi ngAddr]
'Read Menory and save back into array

debug "Read Menory...", cr

ONUT ONi n, ONFERSt, [SkipROM ReadMenory, TALl, TAZ2]

ON'N ONin, ONBERst, [str tenp\8]

debug "Array contains ", str tenp\8, cr

pause 5000
goto start

Listing 10
Writing and Reading the DS1994 Memory (DS1994 MEM.B2P)

The program consists of one loop operating the following factions in succession:
Writing the characters “0” to “7” into an 8-Byte array and display

Defining a target address in the DS1994 Memory

Copying the arrays into the Scratch Pad RAM

180 Chapter 3: Enhanced I/O

Clearing of array and display

Reading the Scratch Pad RAM for verification, storing into the array and display
Clearing of array and display

Copying the Scratch Pad RAMs into memory (NVRAM)

Reading the memory, storing into the array and display

This procedure repeats after a short delay. Two images explain problems possible while
addressing.

Figure 46 shows the numerous outputs of this program example to the Debug Window during
the storage of the array beginning at target address $0077.

#3Debug Terminal #1 —lof =]
Coarm Port: B aud Hate: Fariby:
fcomt =] fsso0 =0 [Nere 7
D ata Bits: Flove Caontral: @ T< [~ DIR [RTS
e ZI fof zl e mx @oDsR ecCIs

=

Fauze Cloze

[Capture. . |

Figure 46 Target Address $0077

Chapter 3: Enhanced I/0 181

While reading data back from Scratch Pad RAM we get the target address and the ending
address. The ending address contains the so-called ending offset (E4:EQ) and the three flags
AA, OF and PF.

B7 |B6 |B5 |B4 B3 B2 Bl BO

The ending offset shows the last written memory cell. In a page of 32 bytes the ending offset
is between $00 and $1F. Going beyond this limit will set the Overflow Flag (OF) and additional
data will be ignored.

Figure 47 shows this situation. The target address is incremented to $0079. To the end of
page 3 (target address $007F) there are only seven memory cells available.

#3 Debug Terminal #1 -0l x|
Cam Part: Baud Rate: Farity:

fcomt =] Jsson =P fNone F

Data Bits: Flows Caontral: @ 1< [~ DIR [RTS
= =l |0t =| @mx ®Dsm @ crs

[Capture... |

Figure 47 Target Address $0079

FPauze Cloze

182 Chapter 3: Enhanced I/O
After reading the Scratch Pad RAM the ending address has a value of $5F. The set Overflow
Flag signalizes that not all data fit into the addressed page.

Reading the data back we immediately see the wrong last byte. This situation does not
change with the copying of the Scratch Pad RAM into the NVRAM. All data read back are
corrupt in this case.

3.2.8 Timer with DS1994

The DS1994 contains three timers in addition to the NVRAM. In the following program
example we experiment with the RTC and the interval timer.

The timer registers are located at the end of the NVRAMs beginning with the target address
$0200

Status Regiser $0200
Control Regiser $0201
Real-Time Counter Registers $0202
Interval Time Counter Registers $0207
Cycle Counter Registers $020C
Real-Time Alarm Registers $0210
Interval Time Alarm Registers $0215
Cycle Alarm Registers $021A

The control register defines the mode of the timers. Chapter 3.2.2.2 explains the meaning of
these bits.

In our simple example the interval timer is started at the beginning of the program. The RTC
runs continuously. After a certain time the interval is stopped and the RTC runs on and on.
Figure 48 shows the timer actions protocol in the Debug Window.

Chapter 3: Enhanced I/0O 183

#j Debug Terminal #1 -|of x|
Cam Part: Baud Rate: Farity:
fcomt =] Jsson =P fNone F
Data Bits: Flows Caontral: @ 1< [~ DIR [RTS
e =i for =] ¢ me @oDsR @crs

=

az0l
a1
a: 10

Cloze |

Figure 48 Controlling and Read-Out the DS1994 Timer

Capture... | tacro Keys...

Writing the byte $10 into the control register starts the interval timer. The two read operations
to the RTC ($0202) and to the interval timer ($0207) get different values as expected.

The writing of the $50 bytes into the control register stops the interval timer. The following
operation shows a different value read from the RTC ($0202) but an unchanged value from
the interval timer ($0207).

Listing 11 shows the source of the program DS1994 TIMER.BSP. Because we located the 1-
Wire commands in subroutines the source is quite readable. The definition part is comparable
to the last 1-Wire program examples.

184 Chapter 3: Enhanced I/O

0 e [Title]

Pur pose. . .
' Author....
' Started. ..
' Updat ed. . .

ds1994 ti mer. bsp

Reading and Witing the Timer of DS1994 i Button
d aus Kuehnel

2001- 08- 13

' This program denonstrates reading and witing DS1994 tiner

registers via the internal

Scratch Pad RAM

- [Drectives J----------mmmmmmi oo -

ONFERSt
ONBERSt
ONBi t Mbde

Ski pROM
WiteScrat ch
ReadScr at ch
CopyScr at ch
ReadMenor y

Cont rol Reg
RTCReg
I ntervReg

Start Ti nmer
St opTi ner

con
con

con
con
con

con
con
con
con
con

con
con
con

con
con

15 "1l-wire device pin

12 "Pin for LED

%9001 " Front - End Reset

%9010 ' Back- End reset

%9100

$CC ' Ski p ROM Comrand

$OF "Wite Scratch Pad

$AA 'Read Scratch Pad

$55 ' Copy Scratch Pad to Menory
$FO ' Read Menory

$0201 "Tinmer Control Regiser
$0202 ' RTC Regi ser $0202- $0206
$0207 "Interval | Ti mer $0207- $020B
990010000 "Start Interval Ti mer
%091010000 'Stop Interval Ti mer

————— [Variables J--------ccmoommmmami oo -

Tar get Addr
TAL
TA2
Endi ngAddr
Tar get Cont

var
var
var
var
var

wor d ' Tar get Address i n NVRAM
Tar get Addr . LowByt e

Tar get Addr . H ghByt e

byt e ' Endi ngAddr ess

byt e 'Content to save

tenp
i dx

init:

var byte(8)
var nib
--[Initialization J--------------o-momi o
pause 1000 ' open debug w ndow
| ow LED ' LED of f
--[Main Code J---------mmmm e
hi gh LED
Target Addr = Control Reg ' Start of Interval Ti ner
Target Cont = Start Ti ner
gosub Wit eDS1994Reg
| ow LED
debug cl's
debug "TA ", hex2 TA2, hex2 TAl, cr
debug "EA ", hex2 Endi ngAddr, cr

debug "Data: ", hex2 tenp, cr

Target Addr = | nt ervReg ' Read I nterval Ti ner
gosub ReadDS1994Ti mrer
gosub D spl ayTi ner

Tar get Addr = RTCReg ' Read RTC
gosub ReadDS1994Ti rer
gosub Di spl ayTi ner

pause 2000 "Wt 2 sec

Target Addr = | nt ervReg ' Read I nterval Ti ner
gosub ReadDS1994Ti ner
gosub D spl ayTi ner

Tar get Addr = RTCReg 'Read RTC
gosub ReadDS1994Ti ner
gosub D spl ayTi ner

Target Addr = Control Reg ' Stop Interval Ti mer
Target Cont = St opTi ner
gosub Wit eDS1994Reg

debug "TA ", hex2 TA2, hex2 TAl, cr
debug "EA ", hex2 Endi ngAddr, cr
debug "Data: ", hex2 tenp, cr

Chapter 3: Enhanced /0 185

186 Chapter 3: Enhanced I/O

pause 2000 "Wt 2 sec

Tar get Addr = I ntervReg 'Read Interval Ti ner
gosub ReadDS1994Ti rner
gosub D spl ayTi ner

Tar get Addr =RTCReg ' Read RTC
gosub ReadDS1994Ti mer
gosub D spl ayTi ner

pause 5000
goto start '"Play it again

Wit eDS1994Req:
ONUT ONi n, ONFERst, [SkipROM WiteScratch, TAl, TA2, Target Cont]
ONUT OMNpi n, ONFERst, [Ski pPROM ReadScr at ch]
ON'N ONi n, ONBERst, [TAl, TA2, EndingAddr, str tenp\1]
ONUT ONpi n, ONFERst, [Ski pROM CopyScratch, TAl, TA2, Endi ngAddr]
return

ReadDS1994Ti ner :
ONUT ONpi n, ONFERst, [SkipROM ReadMenory, TAl, TA2]
ON'N ONi n, ONBERst, [str tenp\5]

return
D spl ayTi ner
debug " TA ", hex2 TA2, hex2 TAl, cr
debug "Tiner =", hex2 tenp(4), hex2 tenp(3), hex2 tenp(2), hex2 tenp(1), cr
return

Listing 11 DS1994 Timer Handling (DS1994 TIMER.BSP)

Chapter 3: Enhanced /O 187

3.3 Controlling LCDs with the HD44780 Controller

Hitachi’'s HD44780 controller is the industry standard among the LCD controllers for alpha-
numeric LCDs. Most alpha-numeric LCDs use this LCD controller or a compatible device.
3.3.1 LCD Module with the HD44780 LCD Controller

The HD44780 LCD controller can control LCD modules with a maximum of 80 displayable
characters. Different manufacturers offer LCD modules with 1, 2 or 4 lines and 16 or 20
characters.

Figure 49 shows a BT 42005 LCD module with 4 lines and 20 characters.

LJKLMROPORST
UHALCYZ y s D pmm b LI |

Figure 49 LCD Module BT42005 (Batron)

On the left half of the top of the PCB there are 14 connectors to control the LCD. LCD
modules with 2x8 connectors are also available.

Table 7 lists a description of the 1/O connections. From this table one could believe that the
number of connections is too many for a BASIC Stamp with its 16 1/O pins. Because the
HD44780 LCD controller can work also with a 4-Bit data bus a microcontroller needs only
seven I/O pins to control the LCD module in parallel.

188 Chapter 3: Enhanced I/O

Pin Name. Level Function
1 VSS GND Ground

2 VDD +5V Supply voltage

3 Vo 0...15V Contrast control

4 RS H/L L: Command; H: Data

5 R/IW H/L L: Write operation; H: Read operation
6 E H/L Enable

7 DBO H/L

8 DB1 H/L

9 DB2 H/L

10 DB3 H/L 8-Bit Data Bus

11 DB4 H/L

12 DB5 H/L

13 DB6 H/L

14 DBY H/L

Table 7 Connectors on a LCD Module

Figure 50 shows the complete hardware required for parallel control of a LCD module. Of the
8-Bit data bus the four most significant bits are used in 4-Bit mode.

If the LCD will only be written to then the R//W lines can be fixed to GND and we only need
the RS and E lines for control.

We use six lines if we use the LCD only as a display. If you want to read back data from the
internal display memory then you must use the R//W line for Read/Write control.

A high/low edge on input E of the LCD controller reads the data from data bus to the LCD
controller. The logic level on input RS distinguishes between commands and data.

Chapter 3: Enhanced I/0O 189

T=D S0UT —
22k o I
Rl] — WEE —
[=4] I
RN -1 —
B P2 -
[=x} —_—
=L} —_—
-D = I
J =] I
(=r] —
10k =4 BSZ2-IC
Lol 1]
. e PR Rl ERE
g oooooood

Figure 50 Parallel Control of a LCD Module

Before we turn to some program examples for LCD control we should have a closer look at
the HD44780 controller itself. We'll describe only those details important for understanding our
program examples. A link to an excellent description of the most aspects of the HD44780 is
given in Chapter 9.

The HD44780 LCD controller contains internal two 8-Bit registers.

The instruction register (IR) saves the received command (RS = 0) while the data register
(DR) saves the received data (RS = 1) before moving them into the Data Display RAM (DD
RAM) or into the Character Generator RAM (CG RAM).

The DD RAM has a capacity of 80 Bytes. Therefore the maximum dimension of a connected
LCD is limited to 4 lines and 20 characters. Bigger LCD modules work with several HD44780
controllers.

190 Chapter 3: Enhanced I/O

Table 8 shows the assignment of display position and memory location in DD RAM for a
4x16-LCD (LM041L, for example).

DDRAM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

l.Line 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
2.Line 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
3.Line 10 11 12 14 13 15 16 17 18 19 1A 1B 1C 1D 1E 1F
4.line 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

Table 8 Assignment of Display Position and Memory Location in DD RAM

As Table 8 shows, not all DD RAM locations are used to display characters. Unused memory

cells are available as external RAM. But, in this case you must control the R/W line to change
the data direction.

Table 9 shows the instruction set coding for the HD44780 while Table 10 shows some
remarks for the used names.

Chapter 3: Enhanced I/0 191

Instruction RS DB7 DB6 DB5 DJB4 J>B3 J>B2 J>B1 DJBO Description
Clear display,
C!ear 0 0 0 0 0 0 0 1 cursor left top
Display o
position
CursorAt 0 0 o o o 1 x Cursorlefttop
Home position
Direction for
Set Entry 0 0 0 0 0 0 1 D S movement of
Mode cursor and
display content
Display See Table 10
on/off 0 0 0 0 0 1 D C B (D, C. B)
Cursor/
) S/ See Table 10
Dispay 0 O 0 0 1 RL X X
Shift C (SIC, RIL)
Function See Table 10
Set 0 0 0 1 DL N F X X (DL, N, F)
Set CG
RAM 0 0 1 ACG > S S S S Address of a
CG RAM cell
Addr
Set DD
RAM O 1 AD> > > > > > Addressofa
DD RAM cell
Addr
Data Write to DD
Write 1 Data > > > > > > > RAM or CG
RAM

Table 9 Coding of the Instruction Set of the LCD Controller HD44780

192 Chapter 3: Enhanced I/O

DD RAM resp. CG RAM address is incremented (I/D = 1) or decremented
(I/D = Q) after writing.

Moves the display content (S = 1) or not (S = 0). The cursor does not

I/D

S move (Calculator). For I/D = 1 the display moves to left, for I/D = 0 to right.
D Display on (D = 1) or off (D = 0). Data in DD RAM stay unchanged.
C Cursor on (C = 1) or off (D =0).
B Cursor blinks (B = 1) or blinks not (B = 0).
Moves display content (S/C = 1) or the cursor (S/C = 0) one position
S/C :
according to R/L.
RIL Moving to right (R/L = 1) or left (R/L = 0) without any change of data in DD

RAM.
DL Width of data bus: 8 Bit (DL = 1) or 4 Bit (DL = 0).
N Number of lines in the display - one (N = 0) — several (N = 1).
F Font - 5x 7 Pixel (F = 0) - 5 x 10 Pixel (F = 1).
X Don't care.

Table 10 Explanation of the HD44780 Instructions

With this explanation the following program examples can be interpreted and adapted to one’s
own requirements.

3.3.2 Parallel Control of an LCD Module

Figure 50 showed already the hardware needed for parallel control of a LCD module with the
HD44780 LCD controller.

With the BS2p’s special LCD commands the programming of an LCD control is very easy.
With a little bit more code each BASIC Stamp can control such LCDs.

3.3.2.1 LCD Control by BS2p

The BS2p knows three very comfortable LCD commands LCDCMD, LCDOUT and LCDIN.
The only limitations are the 1/0 pin assignments.

Listing 12 shows a program example for text output to a 4x16 LCD.

Chapter 3: Enhanced /0O 193

BT [Title J------cmmmmmm e
File...... LCD1. BSP

' Purpose... Stanp -> LCD (4-bit interface)

' Author.... Jon WIlians (for BS1)

! d aus Kuhnel (adaptions to BS2p & LMD41)

' Started... 16 July 1994

' Updated... 03 Sept 2001

' This programdenonstrates the various standard features of an LAD
' display that uses the Htatchi HX4780 controller.
' The LAD used to test this programwas the Htachi LMMIL (16x4).

LCD Connecti ons:

' LCD (Functi on) BS2p
pin 1 Vss VSS
' pin 2 vdd VDD
' pin 3 Vo
' pin 4 RS P3
''pinb5 R'W P2
' pin 6 E PO
' pin 7 DBO
pin 8 DB1
'pin9 DB2
' pin 10 DB3
' pin 11 DB4 P4
' pin 12 DB5 P5
' pin 13 DB6 P6
' pin 14 DB7 P7
BT [Revision HsOry J----------mmmmmmmom i
' 07-16-94 : Version 1.0 - Jon’s original
' 09-20-94 : Version 2.0 - adaptation to LM)41L
' 09-01-01 : Version 3.0 - adaptation to BS2
' 09-03-01 : Version 3.1 - adaptation to BS2p
T [Directives J--------mmmmmmmm oo
:{$STANP BS2p} ' speci fies a BS2p

BT [Constants J--------------m-mmmmi o

E con O ' LCD enable pin (1 = enabl ed)
RS con 3 ' Regiser Select (1 = char)

194 Chapter 3: Enhanced I/O

' LCD control characters

Vekelp con 960110000 * Véke- up

Four B t Mbde con 900100000 ' Set to 4-bit node

Qheli nebx8Font con 900100000 'Set to 1 display line, 5x8 font

Oheli nebx10Font con 900100100 'Set to 1 display line, 5x10 font
Twoli ne5x8Font con 960101000 'Set to 2 display lines, 5x8 font
Twoli ne5x10Font con 960101100 'Set to 2 display lines, 5x10 font

D spl ayG f con 900001000 ' Turn off display, data is retai ned

D spl ayGh con 900001100 ' Turn on di splay, no cursor

O spl ayhUL.Q sr con 960001110 ' Turn on display, wth anderline cursor
O spl ayQnBLQ sr con 960001101 ' Turn on display, wth blinking cursor

I nc@ sr con 900000110 ' Auto-increnent cursor, no display shift

I nc@ srshift con 900000111 ' Auto-increnent cursor, shift display |eft
DecQ sr con 960000100 ' Auto-decrenent cursor, no display shift
DecQ@ srShi ft con 9680000101 ‘' Auto-decrenent cursor, shift display right
a ear O spl ay con 900000001 'Qear the display

HoneD spl ay con 900000010 ' Mve cursor and di splay to hone position
crol | Left con 960011000 ' <croll display to the | eft

<rol | R ght con 960011100 ' <croll display to the right

Q srlLeft con 960010000 ' Mwve cursor | eft

GsrR ght con 900010100 ' Mwve cursor right

MoveQ sr con 240000000 ' Mve cursor to position (nust add address)
MveToGRAV con 991000000 ' Mve to G3AMposition (nust add address)
Li nel con$80 ' addr line #1 | 80H

Li ne2 con$Q0 ' addr line #2 | 80H

Li ne3 con$90 ' addr line #3 | 80H

Li ne4 con$D0 ' addr line #4 | 80H

char var byt e ' char sent to LCD
index var byt e ' | oop counter

————— [Initialization J------------c-c-mmmmommia oo

data "THE BASI C STAW! " ' prel oad EEPROM
data "A Pl Cl6C57 knows" ' prel oad EEPROM
data "P B A S| Cfront ' prel oad EEPROM
data " Parallax Inc. " ' prel oad EEPROM
outl = %90000000 ' clear the pins
dirl =9%1111111 ' set PO-P7 as outputs
pause 1000 ' let the LCD settle

Initialize the LCD (H tatchi HD44780 controll er)

LCDi ni :
| cdcmd E, WakeUp ' 8-bit node
pause 10

Chapter 3: Enhanced /0O 195

| cdemd E, WakeUp

pause 1
| cdemd E, akeUp
pause 1
| cdend E, Four Bi t Mode ' 4-bit node
| cdend E, TwoLi ne5x8Font ' set function for LM41
| cdemd E, Di spl ayCn " disp on, crsr off, blink off
I cdemd E, | ncQr sr ' inc crsr, no disp shift
| cdend E, A ear D spl ay ' clear LCD
————— [Main Code J------------mmmmmmm e
Start:

I cdemd E, dearDispl ay
for index = 0 to 15

read i ndex, char ' get char from EEPRCM
| cdout E, IncQrsr, [char] "wite it
next
I cdend E, MoveQ sr +Li ne2 ' address second |ine
for index = 16 to 31
read i ndex, char ' get char from EEPROM
I cdout E, IncCrsr, [char] "wite it
next
| cdend E, MoveQr sr+Li ne3 ' address third line
for index = 32 to 47
read i ndex, char ' get char from EEPRCM
| cdout E, IncQrsr, [char] "wite it
next
I cdenmd E, MoveQ sr +Li ne4 ' address forth |ine
for index = 48 to 63
read i ndex, char ' get char from EEPROM
| cdout E, IncQrsr, [char] "wite it
next
pause 2000 ' wait 2 seconds
goto Start ''doit all over

Listing 12 Text Output to an LCD (LCD1.BSP)

The program begins with a voluminous set of declarations. All LCD commands are defined as
constants. Because such definitions use no memory it is the best to copy these declarations to
the new source code. To develop readable source code always avoid direct usage of the
assigned numbers in the LCD commands.

196 Chapter 3: Enhanced I/O

Handling the initialization of the LCD is quite similar. The first steps (WakeUp) are defined by
the specifications of the HD44780 LCD controller. Adaptions can follow only after setting the
4-Bit mode.

In our program example we have four text strings saved in EEPROM. The main loop of the
program reads these strings and displays them afterwards.

Before writing the first line the display is cleared and the cursor is moved to the home position
(top left).

Before writing additional lines we have to set the start address. After that we read the string
character by character from EEPROM and send it to the display.

Chapter 3: Enhanced /0O 197

The next program example is built quite similar. We write user-defined characters into the
CGRAM.

In addition to the 192 defined characters the user can define eight characters of their own.
Figure 51 shows the HD44780 character set and the coding of the characters.

198 Chapter 3: Enhanced I/O

Higher
Ihit
Lower ™
dhit

noon

ooLo

1010

1011

1100

1101

=xxx0000

(1001

soos010

wxxx0011

100

wxxx0101

w110

o111

=xxx 1000

s 1001

=xxx 1010

wxwx 1011

] 100

soon] 101

wxxx]110

wom] 111

Figure 51 LCD Character Set

Chapter 3: Enhanced /0 199

The user-defined characters are composed from bit patterns and will be saved in the CG
RAM. The addressing of the CG RAMs is according to Table 11.

DB5 DB4 DB3 DB2 DB1 DBO
ASCII Code Pixel Zeile

Table 11 Content of a CG RAM Cell

Eight pixel lines build a user-defined character. The lowest line is identical to the cursor line
and is normally empty.

In the next program example we define three user-defined characters. Maybe you know them
from some LCD games (Figure 52). In a running sequence from left to right these characters
eat the content of a LCD line.

Figure 52 User-defined Characters

To simplify the generation a user-defined characters Parallax offers the LCD Character
Creator for a free download. Generated user-defined characters can be saved. The resulting
DATA instructions can be copied to the application program. Figure 53 shows the first of the
three characters shown in Figure 52 during its definition with the LCD Character Creator.

200 Chapter 3: Enhanced I/O

=) CD Character Creator o]
File Edit Help
DE W BRsORYI @
— Font
D... $0E ' 5% 7 Font [standard; B characters}
= Bx10Fant [4 characters)
#1F
F1C — Preview
P | Lead#t: 32 c
s1C =
- Follow #: 32
#1F
$0E
00

* Marmally uzed az the curzar line.

ICharD DATA $0E,$1F,$1C,$18,$1C,$1F,$0E,300

chrd, LD |

Figure 53 User-defined Character in LCD Character Creator

You can copy the DATA instruction output in the text field to your application program. The
label (here Char 0) must be adapted.

Chapter 3: Enhanced I/0 201

BT [Title Jo-mmmmmmm e
File...... LCD2. BSP

' Purpose... Stanp -> LCD (4-bit interface)

' Author.... Jon WIlians (for BS1)

! d aus Kuhnel (adaptions to BS2p & LMD41)
' Started... 16 July 1994
Wdated. .. 03 Sept 2001

Thi s program denonstrates the generation of customcharacters for
' an LCD display that uses the Htatchi HD44780 controller. The LCD
' used to test this programwas the Htachi LM41L (16x4).

LCD Connecti ons:

' LCD (Functi on) St anp
' pin1l Vss VSS
' pin 2 vdd VDD
' pin 3 Vo

' pin 4 RS P3

' pin 5 R'W P2

' pin6 E PO
'pin7 DBO

' pin 8 DB1

' pin 9 DB2

' pin 10 DB3

' pin 11 DB4 P4

' pin 12 DB5 P5

" pin 13 DB6 P6

' pin 14 DB7 P7

07-16-94 : Version 1.0
' 09-20-94 : Version 2.0 - adaptation to LM)41L
' 09-06-01 : Version 3.0 - adaptation to BS2p

con O ' LCD enable pin (1

E enabl ed)
RS con 3 ' Regiser Select (1

char)

' LCD control characters

Vekelp con 960110000 ' Veke- up

202 Chapter 3: Enhanced I/O

Four B t Mbde con
(neLi nebx8Font con
(neLi nebx10Font con
Twoli nebx8Font con
Twoli nebx10Font con
D spl ayG f con
D spl ayGh con
O spl ayhUL.Q sr con
O spl ayQnBLQ sr con
I nc@ sr con
I nc@ srShift con
Dec@ sr con
DecQ@ srshift con

960100000 ' Set to 4-bit node

960100000 ' St to 1 display line, 5x8 font
960100100 ' St to 1 display |ine, 5x10 font
2900101000 ' Set to 2 display lines, 5x8 font
200101100 ' Set to 2 display lines, 5x10 font
900001000 ' Turn of f display, data is retai ned
960001100 ' Turn on di spl ay, no cursor

2900001110 ' Turn on display, wth anderline cursor
2900001101 ' Turn on display, wth blinki ng cursor
960000110 ' Auto-i ncrenent cursor, no display shift
900000111 ' Auto-i ncrenent cursor, shift display |eft
260000100 ' Aut o-decrenent cursor, no display shift
200000101 ' Aut o-decrenent cursor, shift display right

a ear O spl ay con 900000001 ' G ear the display
HoneD spl ay con 900000010 ' Mve cursor and di splay to hone position
Scrol | Left con 960011000 ' Scrol |l display to the | eft
<rol | R ght con 960011100 ‘' Scrol |l display to the right
Q srlLeft con 960010000 ' Mve cursor | eft
GsrR ght con 900010100 ' Mve cursor right
MoveQ sr con 940000000 ‘' Mve cursor to position (nust add address)
MveToGRAV con 991000000 ‘' Mve to G3AMposi tion (nust add address)
Li nel con $80 ' addr line #1 | 80H
Li ne2 con $C0 ' addr line #2 | 80H
Li ne3 con $90 ' addr line #3 | 80H
i 80H

Li ne4 con $DO ' addr line #4

char var byte
i ndex1 var byte
i ndex2 var byte

char sent to LCD
' | oop counter
' | oop counter

Char 0 DATA $0E, $1F, $1C, $18, $1C $1F, $0E, $00 ' char 0
Char 1 DATA $0E, $1F, $1F, $18, $1F, $1F, $0OE, $00 ' char 1
Char 2 DATA $0E, $1F, $1F, $1F, $1F, $1F, $0E, $00 ' char 2
data "THE BASI C STAWP! " ' display string

outl = 990000000 ' clear the pins

dirl =9%1111111 ' set PO-P7 as outputs

pause 1000 ' let the LCD settle

Initialize the LCD (H tatchi HD44780 controll er)

LCD ni :

| cdemd E, WakeUp ' 8-bit nmode

pause 10

| cdemd E, akeUp

pause 1

| cdcmd E, WakeUp

Chapter 3: Enhanced I/0O 203

pause 1
| cdemd E, Four Bi t Mbde ' 4-bit node
| cdend E, TwoLi ne5x8Font ' set function for LMM41
| cdend E, D spl ayOn ' disp on, crsr off, blink off
| cdemd E, I ncCrsr ' inc crsr, no disp shift
| cdemd E, d ear D spl ay ' clear LCD
| cdemd E, MoveToCGRAM ' set GG RAM addr to O
for indexl1 =0 to 23 ' build 3 custom chars
READ i ndex1, char ' get byte fromdata
Icdout E, IncOrsr, [char] ' put into LCD CG RAM
next
T [Main Code J-----------mmmmmm e
start:
| cdend E, A ear D spl ay ' clear LCD
for indexl = 24 to 39 ' wite the character string
READ i ndex1, char ' get char fromdata
I cdout E, IncQrsr, [char] ' wite it
pause 50 ' delay 50 ns--for fun only
next
pause 1000 ' pause 1 second
for indexl = 0 to 15 ' cover 16 characters
for index2 =0 to 4 ' 5 characters for ani mation

set DD RAM address and nove cursor to new addr
lcderd E, MoveQrsr | indexl

LOKWP i ndex2,[0,1,2,1," "], char
' wite aninmation character
| cdout E, IncQrsr, [char]

pause 75 ' del ay between chars
next
next
pause 1000
goto Start ' repl ay

Listing 13 Definition of user-defined characters (LCD2.BSP)

The initialization part of this example program is particular to the BS2p. Each user-defined
character is built in eight bytes and saved in EEPROM. After the initialization these bytes are
saved in the beginning at address 0 in CGRAM. The IncCrsr command automatically
increments the address. This works properly under the condition of saving the pixel lines in the
their defined order and address 0 of CGRAM is selected before any saving.

The main part of the program displays the text saved in EEPROM on the LCD which are
eaten from the user-defined Pac-Man characters. For that process the inner loop calls the
user-defined characters and the space.

204 Chapter 3: Enhanced I/O

3.3.2.2 LCD Control by BS2 Modules

Using any other BASIC Stamp 2 module (BASIC Stamp 2, 2sx, 2e) you won't have the
BS2p’s easy-to-use LCD commands. However, we can program the needed signals in a
parallel step-by-step fashion.

As a user you have to ask for each project: “Which performance and features am | willing to
pay for when choosing a BASIC Stamp?”.

Now you can see what is takes to use the less expensive BASIC Stamp 2 for the same
project.

The following program example has the same function as the program in the chapter before. It
is used to explain the procedure.

TR [Title J----mmmmmmm e
" File...... LCD. BS2
' Purpose... Stanp -> LCD (4-bit interface)

Author.... Jon WIllians (for BSl)

' d aus Kuhnel (adaptions to BS2 & LM)41)
' Started... 16 July 1994
" Updated... 01 Sept 2001

Thi s program denonstrates the various standard features of
an LCD display that uses the Htatchi HD44780 controller.

' The LCD used to test this programwas the Htachi LM)41L
©(16x4).

' LCD Connecti ons:

LCD (Functi on) BS2
' pin 1l Vss VSS
' pin 2 Vdd VDD
' pin 3 Vo
' pin 4 RS P3
' pin 5 R'W P2
' pin 6 E PO
" pin7 DBO
' pin 8 DB1
' pin 9 DB2
' pin 10 DB3
" pin 11 DB4 P4
" pin 12 DB5S P5
' pin 13 DB6 P6
' pin 14 DB7 P7

' 07-16-94 : Version 1.0 - Jon’s original
' 09-20-94 : Version 2.0 - adaptation to LM)41L
' 09-01-01 : Version 3.0 - adaptation to BS2

con O

con 3
' LCD control characters
drLd con $01
QsrHn con $02
Q srLf con $10
OsrR con $14
D spLf con $18
D spRt con $1C
Li nel con $80
Li ne2 con $Q0
Li ne3 con $90
Li ne4 con $DO
T [Variables]
out p var byte
char var byt e
index var byt e

data "THE BASI C STAWP! "
data "A Pl C16C57 knows"
data "P B A S|

data " Parallax Inc.

outl = 990000000
dirl =9%1111111
pause 1000

Initialize the LCD (H tatchi

LCD ni :
out |

%0110000

PULSQUT E 10

C front

' LCD enable pin (1
' Regiser Select (1

clear the LCD

nmove cursor to hone
nove cursor |eft
nove cursor right
shift displayed chars |eft

Chapter 3: Enhanced /0O 205

enabl ed)
char)

posi tion

shift displayed chars right

' addr line #1 |
' addr line #2 |

addr line #3 |
' addr line #4 |

80H
80H
80H
80H

out put wor kspace
' char sent to LCD

' | oop counter

' prel oad EEPROM
' prel oad EEPROM

prel oad EEPRCM
' prel oad EEPROM

clear the pins

set 0-5 as outputs
' let the LCD settle

' 8-bit node

HD44780 control | er)

206 Chapter 3: Enhanced I/O

pause 10

PULSQUT E, 10
pause 1

PULSQUT E, 10
pause 1

outl = %90100000
PULSQUT E, 10
char = %90101000
gosub WLCD

char = %90001100
gosub WLCD

char = %90000110
gosub WLCD

char = %90000001
gosub WLCD

hi gh RS

Start:

for index = 0 to 15
read i ndex, char
gosub WLCD

next

char = Line2

gosub LCDcrd

for index = 16 to 31
read i ndex, char
gosub WLCD

next

char = Line3

gosub LCDcrd

for index = 32 to 47
read i ndex, char
gosub WLCD

next

char = Line4

gosub LCDcnd

for index = 48 to 63
read i ndex, char
gosub WLCD

next

pause 1000

char = drLCD
gosub LCDcnd

pause 500

4-bit node

set function for LMA41

disp on, crsr off, blink off

inc crsr, no disp shift
clear LCD

LCD to character node

' get char from EEPROM

wite it

' address second |ine

get char from EEPROM

wite it

address third |ine

get char from EEPROM

wite it

address forth |ine

' get char from EEPROM

wite it

' wait 2 seconds

clear the LCD

Chapter 3: Enhanced /O 207

goto Start ''doit all over

' Send coomand to the LCD
Load char with comrand val ue, then call

' Qear the LCD............. $01, 90000001

' Horme the cursor........... $02, 9©0000010
! D splay control........... (see bel ow)
Entry node................ (see bel ow)
' Qursor left............... $10, 9©0010000
! Qursor right.............. $14, 990010100
' Scroll display left....... $18, 990011000
! Scroll display right...... $1C, 990011100
! Set GG RAM address........ %)laaaaaa (Character Cenerator)
! Set DD RAM address........ %aaaaaaa (D splay Data)

D splay control byte:

! %00001DCB

! | | -- blink character ander cursor (1=bli nk)
| ---- cursor on/off (1=on)

D T di splay on/off (1=on)

Entry node byte:

! %000001XS
! | --- shift display (S=1), left (X=1), right (X=0)
---- cursor nove: right (X=1), left (X=0)

LCDcnd:
| ow RS
gosub WLCD
hi gh RS
return

' Wite ASA| char to LCD

W LCD.
outl = outl & 990001000 ' RS =1, data bus clear
outp = char & 941110000 ' mask the high nibble
outl = outl | outp ' output the nibble
PULSQUT E, 10 ' strobe the Enable |ine
outl = outl & 990001000
outp = char & %90001111 ' get low nibble
outp = outp << 4
outl = outl | outp
PULSQUT E, 10

return

208 Chapter 3: Enhanced I/O

Listing 14 Text Outputto an LCD (LCD.BS2)

3.3.3 Serial Control of an LCD Module

If the minimum six 1/O lines are not available for LCD control you can use a serially controlled
LCD module.

Scott Edwards Electronics [www.seetron.com] offers a Serial Backpack and completely
equipped LCD modules. Figure 54 shows a printed circuit board able to connect different
LCDs. To connect a BASIC Stamp there is a serial data line and +5 V and GND.

Figure 54 LCD Serial Backpack

The Serial Backpack converts the serially received data into parallel transmitted LCD
commands.

The RS line differs between commands and data. On the serial side a command is marked by
a leading code &FE. If you want to send the command Clear Display to the LCD the Serial
Backpack must receive the sequence <&FE> <&01> first.

See Listing 15 for the details of serial LCD control. There are no special features.

----- [Title J----mmmmmmmmm e
" File...... SERI ALLCDL. BS2
' Purpose... Stanp -> Serial LCD
' Author.... daus Kuhnel
' Started... 01 Sept 2001
' Updat ed. . .

Chapter 3: Enhanced I/0 209

' This programdenonstrates the various standard features of an LCD
' display that uses the Htatchi HX4780 control | er.
' The LAD used to test this programwas 20x4 Serial LD from Seetron.

09-01-01 : Version 1.0

" { $STAMP BS2}

XD
N9600
N2400
|

----- [Constants]--------

con 1
con $4054
con $418c
con $FE

LCD control characters

drLc
Q srHm
O srLf
OsrR
D spLf
D spR

Li nel
Li ne2
Li ne3
Li ne4

con $01
con $02
con $10
con $14
con $18
con $1C

con $80
con $Q0
con $94
con $D4

var byt e
var byt e

data "THE BASI C STAWP! "
data "A Pl C16C57 knows"
data "PB A S| Cfront
data "Parallax Inc."

"lniti
LCD ni :

Serial Data to LCD
Baudnode- 9600 bps inverted
Baudnode- 2400 bps inverted
Instruction prefix val ue

clear the LCD

nove cursor to hone position
nove cursor |eft

nove cursor right

shift displayed chars |eft
shift displayed chars right

addr line #1 | 80H
addr line #2 | 80H
addr line #3 | 80H
addr line #4 | 80H

char sent to LCD
| oop counter

Prel oad EEPROM
' Prel oad EEPROM
' Prel oad EEPROM
' Prel oad EEPROM

alize the Serial LCD (HD44780 controller & Serial Backpack)

Now cl ear the screen in case there's text |eft froma previous
run of the program Note that there's a 1-second pause prior to
sending any data to the Backpack. This gives the Backpack plenty
"of tiretoinitialize the LAD after power up.

210 Chapter 3: Enhanced I/O

| ow TxD
pause 1000

start:

serout TxD, n2400,[|,d rLCD|
serout TxD, n2400, [|, Li nel+2]

for index = 0 to 15

read index, char

serout TxD, n2400, [char]
next

serout TxD, n2400, [|, Li ne2+2]
for index = 16 to 31

read i ndex, char

serout TxD, n2400, [char]
next

serout TxD, n2400, [|, Li ne3+2]
for index = 32 to 47

read i ndex, char

serout TxD, n2400, [char]
next

serout TxD, n2400, [|, Li ne4+3]
for index = 48 to 60

read i ndex, char

serout TxD, n2400, [char]
next
pause 2000

goto Start

Listing 15 Serial LCD Control (SERIALLCD1.BS2)

3.4 Interface to the PC Keyboard

Make the serial output |ow
Let the LCD wake-up

O ear the LCD screen

Get char from EEPROM
and print it.
Move to line 2
Get char from EEPROM
and print it.
Move to line 3
Get char from EEPROM
and print it.
Move to line 4

Get char from EEPROM
and print it.

Wit 2 seconds

Do it all over

When interfacing to unique circuits we often look into using Al Williams’ different products
[www.al-williams.com/awce]. Al Williams designed several PAK Co-Processors.
shows the actual products:

Table 12

Chapter 3: Enhanced I/0 211

Type Application
PAK-I Mathematic Co-Processor
PAK-II Enhanced Mathematic Co-Processor
PAK-III Port-Expander 8 1/O Lines
PAK-IV Port-Expander 16 1/O Lines
PAK-V PWM Co-Processor
PAK-VI Keyboard Co-Processor
PAK-VII Pulse-In Co-Processor
PAK-VIII Pulse-Out Co-Processor

Combines PAK-II with 8 digital I/O Lines and 5-Channel 10-Bit

PAK-IX Analog-to-Digital Converter

Table 12 PAK-Co-Processors of AWC

We'll use the PAK-VI in this application example to connect a PC keyboard to a BS2.

Keyboards are tossed aside by computer users so they are offered cheap by second hand
shops or even for free in the corner of your office. They are able to produced alphanumeric
messages and control codes. It is useful to connect these keyboards to BASIC Stamps.

PAK-VI is a PICmicro specially programmed for that purpose. The keyboard signals are
changed to serial data for working with the BASIC Stamp. The difficulties of trying to directly
interface with the keyboard are avoided. This co-processor is also available for interfacing to a
serial mouse instead of a keyboard, but we aren’t using it in this application.

Let’s take a short look at the bi-directional signals of a keyboard. It's normal use is connected
to a PC with its cable. See to the books describing the PC connection in detail if you're
interested in more details.

The synchronous serial data transfer is controlled by a clock signal from PC. In our case the
PAK-VI generates this clock instead of the PC. Synchronous to the clock the data is
transmitted bit by bit. The eight bits of a byte are enhanced with a frame of pulses. So we
essentially get eleven bits for one byte.

212 Chapter 3: Enhanced I/O

This data transmission is hidden to the user with a PAK-VI. The BASIC Stamp is free of the
trouble of handling the keyboard data transmission protocol on it's own.

The BASIC Stamp is connected to the PAK-VI with two-way RS232 in an asynchronous
connection. With the SERIN and SEROUT commands the BASIC Stamp has control over the
keyboard. In the following program example an additional line (/O pin 15 of the BASIC
Stamp) is used to reset the PAK-VI.

Sending commands to the keyboard and Pak-VI uses special control words. For both we’ll
use standard presettings. For PAK-VI these presettings come with the humorous name
“Cook-Mode”.

The keyboard is basically fixed to scan code 3. In this mode each key generates a so-called
“make-code”. Each key is marked with the number of its position. The task for the connected
device is to align a specific character or control to this numbered event. Once a key is pressed
there is no repeat function in this mode.

Figure 55 shows the connection diagram to the PS2 keyboard.

Keykoard Connector
{female connector of PC)

Pin1 Clock
Pin2 Data
Pin3 nc/Reset
Pind GND
Fin5 +5 VvV DC

Figure 55 Connection Diagram to a PS/2 Keyboard

Table 13 shows the pin declarations of the PAK-VI co-processor.

Chapter 3: Enhanced I/0 213

Pin Name 1/0 Type Description
1 RX Input TTL-level RS232 input
2 TX Output TTL-level RS232 output
If this pin is not connected or high, the PAK
17 Enable Input transmits code it receives from the keyboard;

the PAK always responds to commands.
If this pin is low, the PAK transmits code it

18 Enable2 Input receives from the keyboard; the PAK always
responds to commands.

13 DAviIl Output High when data is available.

4 RESET Input Hardware resets the PAK when low. Must be

high for normal operation
3,5 VSS Power GND (ground both pins)

14 VDD Power +5VDC

15 RES1 Clock connects to resonator
16 RES2 Clock connects to resonator
11 DATA I/O Keyboard data line
12 CLOCK /O Keyboard clock line
6...10 N/C N/C Not used

Table 13 Pin connections PAK-VI

Figure 56 shows the connection of a PC keyboard via keyboard co-processor PAK-VI to a
BS2.

214 Chapter 3: Enhanced I/O

v 5|
Ul e EnsaLE: |1 CRYSTAL U equr wn L2
™ ENABLE |p— IN WSS
7 a8 RES2 —B—’—il} — ATH JRES (=1 —
RESET RES1] Rl
[iE) 5| o
| W85 WOD | —{ D P15
—— HC DAL {r— — M P14 r—
— NC CLOCK |7 —{ P2 P13
— NC DATA —{ P3 P2 e
— NC NG —— — 4 P fp—
— P8 10— 330
—{ P8 A
—F7 P
PAk-Y
BS2-IC =
J:ED

4

[

5

[}
=
L]

DATA,
CLOCK

>
e
KEYBOARD

Figure 56 PC Keyboard with PAK-VIto BS2

One notable fact is that when interfacing via PAK-VI the keyboard appears to the BS2 as a
serial asynchronous RS232 coupled device. Because we have no data transmission from

BS2 to the keyboard in our example you will find nho SEROUT command in the example
program.

The connection from the pin SOUT of the BS2 to the PAK-VI input RX can be cancelled. This
connection is shown here to prepare the reader for possible modifications.

As a simple example we control BS2 outputs with signals from the PC keyboard with an LED

connected to 1/0O pinl5. The flashing period of this LED is controlled by a keyed cipher. The
keyed cipher is shown on the Debug Window.

Listing 16 shows the program used for the BS2.

Chapter 3: Enhanced I/0 215

BT [Title J------mmmmmmm e
File...... PAK_NUMR. BS2

' Purpose... UWsing PAK M for recognizing codes from

' keyboard to control the period of a flashing LED

' Author.... K aus Zahnert

' Started... 06/16/01

' Updat ed

' BASCSanp 2 is connected to PC s keyboard by using the PAK M

' keyboard-control ler to nake input for codes O...9. Tining-val ue

' for blinking the LEDis aligned to key pressed codes wth schedul es.
' this programruns for denonstration PAKM with pol ling fromBS2

LED con 15 'pinto drive LED

' baudval con 16624 ' BS2SX/ 9600/ 8/ n/ 1 di rect con.
baudval con 16468 'BS2 /9600/8/n/1 direct con.
t out con 100 "wait for SER N response (ns)
datinpin con 12

fpin con 13

bor der var word 'generated with precal c. schedul e
n var word ' Loopi ndex

dati nbyt var byte

dat ol dbyt var byte

code var byte

' { $STAW BS2}

hi gh LED

low fpin "PAK 6 enabl e 2

bor der = 10 'Startval ue

BT [Min Code J-----------c-mmmmmmi e

start:
For n = 1 to border ‘toggl e LED with period(keypr)
serin dati npi n, baudval , t out, goon, [dat i nbyt]

goon: If datinbyt <> datol dbyt then cal c ' need new peri od?

next

216 Chapter 3: Enhanced I/O

toggl e LED
goto start
cal c:

| ookdown dat i nbyt, [6, 103, 51, 102, 25, 101, 50, 100, 12, 99] , code

' makes code : 0o, 1, 2, 3,4 5 6, 7,8 9
| ookup code ,[1,2,4,7,612,22,42,75, 135, 255], bor der

' makes val ue for bordl fromschedul es position, given by code

debug "Ziffer =", dec code, TAB, TAB, "Zeitkonst.= ", dec border,cr

‘store datinbyt in datol dbyt to conpare again
dat ol dbyt = dati nbyt
goto start

Listing 16 Keyboard input using PAK-VI (PAK_NUM2.BS?2)

In this program example the restriction is that we’re only using ciphers as a reference. By
enhancing the scan code you can receive more inputs from the keyboard. The limit is only
determined by the memory space of the BASIC Stamp.

The program permanently polls the state of the PAK-VI output register. If any key was
pressed the output value changes. Recognizing that, the polling loop is left and the new output
is used for identifying the pressed key.

In the program example the main code of the codes (from keyboard documentation) is stored
in a lookdown table. The returned value of the LOOKDOWN command is the codes value.
Comparing this value with one in the table is the same task as the PC’s keyboard controller
does but with more elegance for the whole set of characters.

The DEBUG command sends the value of recognized key to the Debug Window.

In this simple example it is not practical the flashing period of a LED it is not practical to set the
flashing time immediately from the keyed values 0...9. For more visible effects we use a
LOOKUP table to align blinking values in steady increments to the variable Border. This value
is used as an index for a counting loop.

After finishing the counting by ending the loop, the LED output is toggled.

3.5 Port Enhancement with Shift Registers

With 16 1/O pins the BASIC Stamps (BS2, BS2sx, BS2e and BS2p-24) are armed with almost
enough resources to connect different peripheral components. With BS2p-40 the number of
I/O pins is doubled to 32. But, for enhancing the number of 1/O pins often there is an
inexpensive solution with separate integrated circulits.

Chapter 3: Enhanced /0 217

Output registers store values from serial input with a few 1/O lines. The bits are shifted from
one register to the next while input occurs. After that, the message is available on parallel
outputs.

This kind of port enhancement is useful in cases where the loss of speed in data transmission
can be tolerated by the connected peripheral components. This is often the reality with
common examples using keyboards and displays. It is often possible to design mechanical
control systems with such hardware.

There are different types of serial protocols. With one line at a minimum you can have
functional RS232 communication.

Synchronous serial protocols need a clock line in addition to the data line. A sample was
already given in Chapter 3.1.1 with the I°C coupled port enhancement using the PCF8574A.
This example developed a parallel printer control with only two 1/O lines.

The cheapest solution is to use shift registers from the standard line of TTL circuits.

In the following example the D-Flip-Flop 74HCT174 is used. The 74HCT174 contains six
single D-Flip-Flops with a common clock line. Each of the six Flip-Flops has an input and two
outputs with inverse levels. A D-Flip- Flop moves the state of the input line to outputs at the
positive edge of the clock line.

To build a shift register, the flip-flops must be cascaded in chain. For a 74HCT174 the data
output Q(n) must be connected to the data input D(n+1) by external wiring. With the positive
edge of the clock the state of the former Flip-Flop is moved to the following Flip-Flop. Using
one 74HCT174 we gain six digital outputs for two 1/O pins of the BASIC Stamp.

There is no strict advantage with this small number of wired outputs. But in the following
example it is easy to recognize how it works as we demonstrate using a chain of 74HCT174s.
By cascading the 74HCT174s we get n*6 outputs by using only 2 BASIC Stamp I/O pins.

Figure 57 shows the three 74HCT174 cascaded to get a 18-Bit shift register. The transition
from one Flop-Flop to the next is drawn by arrows in a symbolic manner.

218 Chapter 3: Enhanced I/O

CLOCK
DATA ——

1 |

- -

117733

Figure 57 Cascading three 74HCT174

4 - = -

IR
13 18

!

Yeve

Ausgange

-

o4

"
12

Figure 58 shows the circuit diagram for the port enhancement using one 74HCT174.

+ 13]
III
47K
— sour [Ty
SIM WEE
T = .]
— SR il o Hy o pe—
] il e g B s T
PO P15 1o G0
[4Tk S
P w1 e | —H 5 0 o5
T "y [T
& R] &\ m | —H% - T o]
—T] T ™ L/] N
] P5 P10 T ™ nWES cCP
P& P2
O P Q
1 TAHCTI74 -
BS2-IC - = T
T3
P
o ouT
I

Figure 58 Port Enhancement with 74HCT174

The BASIC Stamp 2’s PO is used for data output and I/O pin 1 is for the clock. The /RD input
of 74HCT174 is connected high using a pull-up resistor of 4.7 kOhm. In this configuration the
shift register is setup for shifting in data serially. Pay careful attention to the wiring connection
between the six flip-flops to get a properly functioning shift register.

The six outputs of the shift register, shown on the right site of the diagram on the bus are
available for your project. But why reconnect the six output lines to the BASIC Stamp? This
seems to negate the additional outputs we’ve created!

Chapter 3: Enhanced I/0 219

This connection, denoted by a dashed line, is only for demonstration. By connecting the
parallel output to the BASIC Stamp, we can re-read it to see the result in the Debug Window.
While running the program we can verify the equality of transmitted and received message.

Listing 17 shows the source of the program SHIFTREG.BS2.

' {$STAWP BS2}
BT [Title J------cmmmmmm e
" File...... SH FTREG BS2
Purpose... Port Enhancerment with serial connected
' shift regi ser
' Author.... K aus Zahnert
' Started... 06.06.01
Updat ed. . .

BT [ProgramDescription J--------------------------------

' Two output lines for clock and data to drive a connected
' shiftregiser are used for port enhancing up to 6 output-Iines.

' For denonstration these outputs are inputs of BS2-1C. So the
‘serial transmtted states of that 6 |ines are shown on debug-
'window to see the same contents.

cl kpin con 1
datapin con 0

out byt var byte

D RH = $00 "I/ O Port. highbyte for input
| ow cl kpi n
| ow dat api n

220 Chapter 3: Enhanced I/O

start:
For outbyt = 0 to 31
shiftout datapin, clkpin, nsbfirst, [outbyt\6]
debug dec2 out byt, tab, tab, bin8 outbyt,tab,bin8 INH ,cr
pause 500
next
end

Listing 17 Port Enhancement with Shift Register (SHIFTREG.BS?2)

In a loop the SHIFTOUT command sends the values 0 to 31 to the shift register. The DEBUG
is used to display the value sent with the value read back.

Chapter 4: BASIC Stamps on the Net 221

4 BASIC Stamps on the Net

TCP/IP is the standard for a platform-independent data exchange of different components via
intranet or internet. A device connected with TCP/IP to the internet can accessed from any
point in the internet. The infrastructure needed for this type of networking uses Ethernet
networks, telephone lines, or even wireless. The device that should be integrated to a network
only needs a TCP/IP stack.

Depending on the application there are very different solutions to make this work.

The resources required for implementing a TCP/IP stack are not available in small
microcontrollers like the BASIC Stamp. A simple way out is to use the PC as a gateway.

4.1 MondoMini Webserver

The MondoMini Webserver (www.mondomini.com) is a gateway installed on a PC and can
connect any microcontroller with the internet (Figure 59).

Wikrocontroller
z.B. BASIC Starnp

Figure 59 MondoMini Webserver as a Gateway

222 Chapter 4: BASIC Stamps on the Net

MondoMini Webserver has the following features:

Windows 98/NT/2000 compatibility

Usage of the PC to display web sites which were updated by the microcontroller
Update of websites via FTP

Transmission of control data to the microcontroller

Display of messages generated by the microcontrollers on a web site

Sending of an E-Mail triggered by event of the microcontroller application

The MondoMini Webserver runs on a PC using Windows 98/NT/2000. Simple commands
over the serial interface build the communication between the microcontroller and the
MondoMini Webserver. The MondoMini Webserver includes the received data into HTML
pages accessible by a Web browser.

4.2 BASIC Stamp connected to the MondoMini Webserver
In the next program examples we can use any BS2 connected to the MondoMini Webserver.
We do not need the special features of the BS2p for this application.

The hardware base for the following examples is the circuit diagram shown in Figure 60. If you
use the BASIC Stamp Activity Board then you already have the complete circuitry.

Chapter 4: BASIC Stamps on the Net 223

Foner
b o o
e S
o—
- 1 220
ot 1
o
Host PG a' SOUIT v [———
o4— S ves |——
o ATH RES |—— !-‘ﬂ LED
o VES VD E
T — Im Pis —_
P P4 —
< To LCD 2] P —
| —_— P P2 —ou
Henal LD v o .5
— P Pid f——
W —_— = —_— [m]
7 =]
=
2k
0.1 u
220 BSZ-IC

F2

oo —m

Figure 60 BS2 with MondoMini Webserver

To run the program examples the BS2 must be connected serial to the PC according to
Figure 60 and the MondoMini Webserver must be running on the Host PC.

Because the MondoMini Webserver is connected to the programming interface of the BS2 we
have to use the following commands for the communication between MondoMini Webserver
and the BS2:

BS2 transmits:

SERQUT 16,84, 1,[...]

224 Chapter 4: BASIC Stamps on the Net

BS2 receives:

SER N 16, 84, 1000, nocommand, [STR string\7\"; "]

4.2.1 Sending E-Mails
Sending an E-Mail can be initiated at a selected time.
In our first program example the BS2 sends an E-Mall after the pushbutton on P8 is pressed.

In an endless loop we’ll check the pushbutton on P8. A blinking LED signalizes that the
program is running.

After detecting that the pushbutton is pressed we query the potentiometer connected to P7.
You can put any hardware on this pin for any procedure or data acquisition. We display the
result on a serial connected LCD for verification before the E-Malil is built and sent. Listing 18
shows the program responsible for sending E-Mails.

Thi s program denmonstrates sending enail fromBASIC Stanp 2
to one enail address.

BASI C Stanp Activity Board was used as target hardware.
After pressing a key (P8) the pot neter connected to P7 is
read and the pot neter value is sent afterwards.

The serial link is connected to a PCs GOM Port runni ng

' MondoM ni webser ver.

Created: 28.02.2001 A aus Kuhnel

LCD con 1 ' Serial LCD on P1
LED con 10
POTI N con 7 ' Potentioneter on P7
N2400 con $418c ' Baudrate for serial LCD
| con 254 ' Instruction prefix val ue.
AR con 1 ' LCD cl ear-screen instruction
adc var word ' Wird variable for ADC
pause 1000
SERCQUT LCD, n2400, [, QLR ' Qear the LCD screen.
pause 1
SERQUT LCD, n2400, [|, 128]
SERQUT LCD, n2400, [" Val ue: "] ' Print nmessage.
start:
hi gh LED: pause 200 ' Blink LED

| ow LED : pause 10

Chapter 4: BASIC Stamps on the Net 225

IF In8 <> 0 THEN pass ' Pass if key is not pressed
gosub readpot ' Read pot neter val ue
SERQUT LCD, n2400, [1, 135] ' Print message on LCD

SEROUT LCD, N2400, [DEC2 adc. | owbyt e]
gosub sendri |
pass: goto start

r eadpot :
hi gh potin
pause 1
RCTI ME POTIN, 1, adc
adc=adc/ 2
adc=adc. ni b2
return

sendnai | :

SERQUT 16, 84+$4000,
SERQUT 16, 84+$4000,
SERQUT 16, 84+%$4000,
SERQUT 16, 84+%$4000,
SERQUT 16, 84+$4000,
SERQUT 16, 84+$4000,
return

"EMEi nf o@kuehnel . ch; "]

"This is an email alert generated by\n;"]
"BASI C Stanp and MondoM ni Webserver.\n;"]

"P8 key was pressed on BS Activity Board.\n;"]
"Read Pot value is ",dec adc,".;"]

"EM"]

PRPPPRPPP
s

Listing 18 Sending E-Mails (EMAIL.BS2)

Building the E-Mail is quite simple. The tag EM=... marks the E-Mail address of the receiver.
The text to be sent follows this address and the E-Mail is closed by the tag EM

Now you can click the “Events” tab on MondoMini Webserver to show all activities of the
MondoMini Webserver. Figure 61 shows this screen.

mailto:16,84+$4000,1,["EM=info@ckuehnel.ch;"]

226 Chapter 4: BASIC Stamps on the Net

izt 1 he MondoMini Web Server - www MondoMini. com

12:44:11.740 HTTP Server Started: gw2k [1 ?3.22?.12.2:'
12:44:15.100 EM=infol@ckushnel ch;

12:44:19.210 Thiz iz an email alert generated byhn;
12:44:19.320 BASIC Stamp and MondobMini Webserver.
12:44:159.380 P8 key was preszed on BS Activity Board.
12:44:13.430 Fead Pot walue iz 5.

12:44:19. 490 EM:

T12:45:02.770 Email zent successiully

About Help | Quit |

Figure 61 Webserver Protocol

At 12:44:19 an e-Mail was sent triggered by the pushbutton P8 on the BASIC Stamp Activity
Board. Compare the protocol and program Listing 18 to verify.

The E-Mail received is shown below. Figure 62 shows the received E-Mail in the mail program
Eudora Light. The appearance of this e-Mail depends of the e-Mail client you are using, of
course. The content would be the same.

Chapter 4: BASIC Stamps on the Net 227

g' Eudora Light - [bs{@ckuehnel.ch, Message from your MondoMim We]

[=] File Edit Mailbox bessage Transfer Special Tools “window Help =] x|
2| < 4= | 4= = I . =
ﬁl G El S EERE] @l @| | 't?|
i EMAIL % Btau| || 'I Subject: | Message fram your Mandalini ¥Web Server |
..... 1
,,,,, g Dnut Fram: bs@ckuehnel.ch
_____ B Trash DATE: O3 March 01 12:45 (MEZ) Mitteleuropéische Zeit
,,,,, &P Allgemein SUBJECT: Message from your MondoMini Web Server
_____ & bascamEar To: infai@ckuehnel ch
----- @ Basic Micro L .
_____ & Celestial Hor This is an email alert generated by
_____ & Cans_Distr BASIC Stamp and MondoMini Webservar.
_____ & D \wieh P8 key was pressed an BS Activity Board.
..... £ HP Infatech Read Pot value is 5.
----- &AL, _ILI
i
For Help, press F1 4

Figure 62 Received E-Mail

4.2.2 Query of Variables

The e-Mail in the last chapter showed the value of the potentiometer (5) as a variable inserted
in the text of the message.

If one wants to query a variable in the BS2 using the web browser then MondoMini must know
this variable’s name. The BS2 application program would transmit the content of the variable
to MondoMini so it can be queried by the web browser. The following program example
explains how the BS2 transfers a variable to the MondoMini Webserver.

Listing 19 contains an endless loop which queries the potentiometer and transmits the value
to the LCD and to MondoMini Webserver. The command SERQUT
16, 84+%$4000, 1, ["P1=", DEC adc, ";"] sends the variable adc to MondoMini. The web
server can identify this variable by the tag P1. The blinking LED flashes to demonstrate the
program is operating.

Thi s program denonstrates sending a variabl e from BS2

' to MondoM ni web server.

Your web browser can read this value and displ ay.

BASIC Stanp Activity Board was used as target hardware.
After pressing a key (P8) the pot neter connected to P7
is read and the pot neter value is sent afterwards.

The serial link is connected to a PCs GOM Port runni ng

228 Chapter 4: BASIC Stamps on the Net

' MondoM ni webser ver.

' Qeated: 28.02.2001 d aus Kuhnel

LCD con 1 ' Serial LCD on P1
LED con 10
POTI N con 7 ' Potentioneter on P7
N2400 con $418c ' Baudrate for serial LCD
| con 254 ' Instruction prefix val ue.
AR con 1 ' LCD cl ear-screen instruction
adc var word ' Wird variable for ADC
pause 1000
SERQUT LCD, n2400, [I, OLR ' Odear the LCD screen.
pause 1
SERQUT LCD, n2400, [I, 128]
SERQUT LCD, n2400, [" Val ue: "] ' Print nmessage.
start:
hi gh LED: pause 500: ' Blink LED

| ow LED : pause 10

gosub readpot

SERQUT LCD, n2400, [|, 135]

SERCUT LCD, N2400, [DEQ2 adc. | owbyte] * Print val ue on LCD
SERQUT 16, 84+$4000, 1, ["P1=", DEC adc, "; "]

goto start

readpot :
hi gh potin
pause 1
RCTI ME POTIN, 1, adc
adc=adc/ 2
adc=adc. ni b2
return

Listing 19 Sending a Variable (PUTVAR.BS2)

For querying a variable using a web browser you need to install an HTML program. We need
no special features here and can use any text editor to write this HTML program. Figure 63
shows the presentation of this file in the Internet Explorer before we have a look to the HTML
text itself.

Chapter 4: BASIC Stamps on the Net 229

3 CK.: BASIC Stamp - Microsoft Intemnet Explorer

J File Edt “iew Go Favortes Help |

& -0 AESE HBS

J Address I@ http: /flocalhost: B0B0/query. html j

BASIC-Stamp

(c) CK:

Query the pot meter value on BASIC Stamp Activity Board

Pot meter value is 11

Last modified: 25.02.2001

” l_l_l_ 2 Local intraret zone

SN

Figure 63 Query a Variable (QUERY.HTML)

A click to the hyperlink "Query" starts a query to the MondoMini Webserver and it transmits
the subject value. Listing 20 shows the HTML text of the page shown in Figure 63.

<HTM_>
<HEAD>
<TI TLE>CK: BASI C St anp</ Tl TLE>
</ HEAD>
<BCDY BGOOLOR="#FFFFFF" >
<H3><I M5 SRC="ck. gi f" WDIH=20 HEl GHT=55
ALl GN\Er i ght ></ B></ FONT>BASI C St anp</ FONT></ H3>

<P>Quer y</ B></ FONT></ A>
the pot neter value on BASIC Stanp Activity Board</ FONT></ P>

<P>Pot meter val ue is ' Pl</ FONT>

<HR>

Last nodified: 28.02.2001</ FONT></ P>
</ BCDY>

</ HTM_>

Listing 20 Query a Variable (QUERY.HTML)

230 Chapter 4: BASIC Stamps on the Net

By clicking the links the program QUERY.HTML refreshes the web page. The variable P1,
linked to the variable adc in the BS2 application program will be displayed by the Web
browser.

4.2.3 Changing of Variables

If you want to initialize or modify a variable in the BS2 application program using the web
browser you must know whether the webserver has access to the client. In our case the BS2
is the client (Client-Server-Model).

The BS2 application program has to ask the Webserver if there are new commands or data
for it. Listing 21 shows an example BS2 program. The new commands here are marked in
bold.

Thi s program denonstrates sending a variabl e

from MondoM ni web server to BASIC Stanp 2.

Aclick in your web browser sets a flag on BS2.

BASI C Stanp Activity Board was used as target hardware.
The serial link is connected to a PCs GOM Port runni ng
Mondo M ni webserver.

' Qeated: 28.02.2001 d aus Kuhnel

string var byte(8)

flag var bit

LCD con 1 ' Serial LCDon P1

LED con 10

POTI N con 7 ' Potentioneter on P7

N2400 con $418c ' Baudrate for serial LCD

| con 254 ' Instruction prefix val ue.
AR con 1 ' LCD cl ear-screen instruction

D RS =%©000111100000000

QUTC =94111

pause 1000

SERQUT LCD, n2400, [|, QLR ' dear the LCD screen.
pause 1

SERQUT LCD, n2400, [|, 128]

SERCQUT LCD, n2400, [" Val ue: "] ' Print message.

"Tell MondoMni to clear all commands queued up
SERQUT 16, 84+$4000, 1,["CC "]

start:

Chapter 4: BASIC Stamps on the Net 231

hi gh LED: pause 500: " Blink LED
| ow LED : pause 10

'Query the MondoM ni for a command.
SERQUT 16, 84+$4000, 1, ["QC "]

"Wait 1000 ns for a commrand from MondoM ni
SER N 16, 84+$4000, 1000, nocommand, [STR string\ 7\"; "]

'Test for "P1=1"
IF (string(0)<>"P' OR string(1l)<>"1" CR string(3)<>"1") THEN next command
flag =1: QUI8 = flag
SERQUT LCD, n2400, [I, 135]
SERCUT LCD, N2400, [BINL flag] ' Print value on LCD
SERQUT 16, 84+$4000, 1, ["P1=", BINL flag, ";"]

next command:
'Test for "P1=0"
IF (string(0)<>"P' OR string(1l)<>"1" CR string(3)<>"0") THEN next commandl
flag =0 : QUI8 = flag
SERQUT LCD, n2400, [|, 135]
SERCUT LCD, N2400, [BINL flag] ' Print value on LCD
SERQUT 16, 84+$4000, 1, ["P1=", BINL flag, ";"]

next conmandl:

noconmand:
goto start

Listing 21 Receiving a Command (GETVAR.BS2)

Before running the endless loop the program clears everything in MondoMini Webserver by
the command "CC". Inside the endless loop the program queries the MondoMini Webserver
periodically for received commands.

The command SERI N 16, 84+$4000, 1000, nocommand, [STR string\7\"; "] reads a
command with maximum of 7 characters or until the character ";" in the variable st ri ng is
encountered. If no command is received from MondoMini Webserver the BS2 goes into

timeout and runs the loop again.

If a command is received then we have to decode it. Valid are the commands P1=0 and P1=1
only; all other commands are ignored. Depending on the flag variable the BS2 application
program controls several displays (LED, LCD).

232 Chapter 4: BASIC Stamps on the Net

For setting or resetting this flag from the web browser an appropriate HTML program was

installed on the Webserver. Figure 64 shows the web side in the Internet Explorer belonging
to it.

< CK: BASIC Stamp - Microsoft Internet Explorer

J File Edit “iew Go Favoites Help |

& - QA BEIY HBS

| Address [&] htp: /ocalhost B080/5P1=1 $set himl =

BASIC-Stamp

(c) CK:

Set aflag on BASIC Stamp Activity Board

Fress here to reset the flag

Press here to set the flag

Last modified: 25.02.2001

[l_l_l_[% Local intranet zone

sl

Figure 64 Setting a Flag (SET.HTML)

A click on one of the hyperlinks sends a variable to MondoMini Webserver where it is saved
for queries by the BS2. Listing 22 shows the HTML text of that web side shown in Figure 64.
Both hyperlinks were marked bold later.

<HTM_>
<HEAD>
<TI TLE>CK: BASI C St anp</ Tl TLE>
</ HEAD>
<BCDY BGOOLOR="#FFFFFF" >
<H3><| M5 SRC="ck. gi f" WDIH=20 HEl GHT=55
ALl G\Er i ght ></ B></ FONT>BAS| G- St anp</ FONT></ H3>

<P>Set a flag on BASIC Stanp Activity
Boar d</ B></ FONT></ P>

<P>Press here to reset the
f | ag</ FONT></ A></ P>

<P>Press here to set the
f | ag</ FONT></ A></ P>

<HR>
Last nodifi ed:

28. 02. 2001</ FONT></ P>
</ BODY>

Chapter 4: BASIC Stamps on the Net 233

</ HTM.>
Listing 22 Setting a Flag (SET.HTML)

4.2.4 BASIC Stamp Monitoring System

Based on the explanations we've provided we can build a monitoring system with the
following features:

e Query of a measuring value

o Alarm after exceeding one of the defined limits by E-Malil

o Periodic query of a measured value and limit by a Web browser

e Signalization of the Alarm on a web site displayed using a web browser
e Setting the limit via a web page

The measuring procedure is simulated by a query of the potentiometer as before. Listing 23
shows the BS2 application program. All commands important for the communication with the
MondoMini Webserver were marked bold later again.

This program denonstrates setting a limt in a BS2

' application programby your web browser.

' BASIC Stanp Activity Board with a serial LCD was

' used as target hardware.

' The BS2 application reads periodically the pot neter val ue,
di spl ays themon LCD and sends an erail when the value is

' over the limt.

' The serial link is connected to a PCs OOM Port runni ng

' Mondo M ni webserver.

' (reated: 28.02.2001 d aus Kuhnel

LCD con 1 ' Serial LCD on P1

LED con 10

POTI N con 7 ' Potentioneter on P7

N2400 con $418c ' Baudrate for serial LCD

| con 254 ' Instruction prefix val ue.
CLR con 1 ' LCD cl ear-screen instruction
string var byte(8) ' Command string

limt var byte ' Byte variable for limt

adc var word ' Wrd variable for ADC

nunber var word ' Wrd variable for nunber conversion

234 Chapter 4: BASIC Stamps on the Net

i var nib ' | ndex
enai | sent var bit ' Flag
D RS =9%©000111100000000
QUTC = %4111
limt = 15 ‘" Initialize limt with maxi num
"Initialize the LCD
pause 1000
SERCQUT LCD, n2400, [, QLR ' Qear the LCD screen.
pause 1
SERQUT LCD, n2400, [|, 128]
SERQUT LCD, n2400, [" Val ue: "] ' Print nmessage.
SERQUT LCD, n2400, [1, 138]
SERCQUT LCD, n2400, ["Limt:"] ' Print message.

‘Tell MondoMni to clear all commands queued up
SERQUT 16, 84+$4000, 1, ["CC "]

start:
hi gh LED: pause 100: ' Blink LED
| ow LED
gosub readpot ' read pot neter val ue
IF adc > 1limt THEN al ert " Aert if adc exceeds limt

emai l sent = 0
SERCQUT 16, 84+$4000, 1, ["ML= ;"]

di spl ayval ues:
SERCQUT LCD, n2400, [|, 135] ' Print values on LCD
SERQUT LCD, N2400, [DEC2 adc. | owbyt €]
SERQUT LCD, n2400, [|, 145]
SERQUT LCD, N2400, [DEC2 |im t]

"Report the value of pot neter and limt
SERQUT 16, 84+$4000, 1, ["P1=", DEC adc. | owbyte, "; "]
SERQUT 16, 84+$4000, 1,["P2=",DEC | imt,";"]

'Query the MondoM ni for a conmand.
SERQUT 16, 84+$4000, 1, ["QC "]

‘Wait 1000 ns for a command from MondoM ni
SERI N 16, 84+$4000, 1000, nocommand, [STR string\ 7\"; "]

' Test for "P2=xxx"

IF (string(0)<>"P' OR string(l)<>"2" CR string(2)<>"=") THEN next command
nunber = 0

ii =3

Chapter 4: BASIC Stamps on the Net 235

ml: |F string(ii) = 0 THEN nunbered
nunber = nunber * 10 + string(ii) - 48
i =ii +1
goto il
nunber end:
limt = nunber.| owbyte

next command:
' Insert further commands if needed

noconmand:
goto start

r eadpot :
hi gh potin
pause 1
RCTI ME POTIN, 1, adc
adc=adc/ 2
adc=adc. ni b2
return

alert:
IF email sent = 1 THEN di spl ayval ues
SERQUT 16, 84+$4000, 1, ["EM=i nf o@kuehnel . ch; "]
SERQUT 16, 84+$4000, 1, ["BASI C Stanp indicates ;"]
SERQUT 16, 84+$4000, 1, ["an alert situation!\n;"]
SERQUT 16, 84+$4000, 1, [" Pl ease check! ;"]
SERQUT 16, 84+$4000, 1, ["EM "]
SERQUT 16, 84+$4000, 1, ["ML=BASIC Stanp just sent an email alert!;"]

enai | sent = 1 ' EMail was sent
got o di spl ayval ues

Listing 23 Monitoring System (MONITOR.BS2)

At the first activity the BS2 sends a variable without content “M1= ;* to the MondoMini
Webserver. M1 is a message and will be filled with some text after exceeding the limit. After
that the BS2 sends the value of the potentiometer and the limit to the MondoMini Webserver
before querying for commands.

If no command is received by the MondoMini Webserver, a new pass through the loop begins
after one second and the value on the Webserver is utilized.

If a command is received by MondoMini Webserver then it will be read and analyzed.
MondoMini expects a command in the form P2=xxx with xxx describing the new limit value.
The number string must be converted into a text string before we can update the variable and
repeat the process again.

mailto:16,84+$4000,1,["EM=info@ckuehnel.ch;"]

236 Chapter 4: BASIC Stamps on the Net

The next figures show the web site in the web browser. Figure 65 shows the output if the
measured value is below the limit. However, Figure 66 shows the value exceeding the limit.

; CK: BASIC Stamp - Microsoft Internet Explorer

J Fil= Edit “iew Go Faworiter Help ‘

& - QA QEIR HBS

N =]
[~
BASIC-Stamp ¥
L&)
Pot meter value: 5 <
Setting of Limit: 6
Zhange the limit;
Limit=2 Limit=4
Limit=6 Limit=58

Last modified: 28.02 2001

H ’_’_’_ 25 Local intranet 2one

Figure 65 Measuring value below the limit

B

Before the e-Mail is sent the M1 variable receives the text as shown in Figure 66 and the web

browser can display this message. The e-mail corresponds to the representation shown in
Figure 67.

Chapter 4: BASIC Stamps on the Net 237

3 CK.: BASIC Stamp - Microsoft Intemnet Explorer

J File Edt “iew Go Favortes Help |

- 20D AESE HBS

| Address @ hitp://localhost 8080imit hirl =l
BASIC-Stamp £ B
Pot meter value: 8 <
Setting of Limit: 6
Change the limit:
Limit=2 Limit=4
Limit=6 Limit=8

BASIC Stamp just sent an email alert!

Last modified: 28.02.2001 :I
-
o

” l_l_l_ 2 Local intraret zone

Figure 66 Measuring value above the limit

g' Eudora Light - [bs@ckuehnel.ch, Message from your MondoMini ‘We]
=] Elle Edit Mailboy Message Transfer Special Tools Window Help _|ﬁ'|1|
4= |4z =g A =
ﬁ| || ‘%l %l@ @l = E?l * *l @| @l | k?l
@g-?”— s Et“l g || "l Subject: | Message from your MandoMini Web Server |
..... & Dnut Fram: bs@ickuehnel.ch
,,,,, B Trash DATE: 03 March 01 16:09 (MEZ) Mitteleuropaische Zeit
_____ & Alaemein SUBJECT: Message from your Maondohdini Web Server
,,,,, & bascom@or To: info@ckuehnel.ch
----- & Basic Micra o o
,,,,, & Celestial Hor BASIC Stamp indicates an alert situation!
..... & Cons_Dist Please check!
----- @ Dr. wWeb
----- & HF Infotech
----- == _ILI
1] i »
For Help, press F1 4

Figure 67 Sent E-Mail after limit is exceeded

238 Chapter 4: BASIC Stamps on the Net

The HTML text can be briefly explained (Listing 24). Locations where code was changed are
marked bold. At the beginning we place a META-tag to re-load the page LIMIT.HTML every 5
seconds.

With a periodic refresh the web browser can display the actual data saved on the webserver.
If the web browser does not support automatic refreshing then you have to reload the page
manually.

<HTM_>
<HEAD>
<TI TLEXCK: BASI C St anp</ Tl TLE>
<META HTTP- EQUI V="refresh" CONTENT="5; URL=linit.htm">
</ HEAD>
<BCDY BGOOLOR="#FFFFFF" >
<H3><| M5 SRC="ck. gi f" WDIH=20 HEl GHT=55
ALl G\Er i ght ></ B></ FONT>BAS| G- St anp</ FONT></ H3>

<P><TABLE BORDER=0>
<TR>
<TD W DIrH=180>
<P>Pot meter val ue: </ B></ FONT></ P>
</ TD>
<TD>>
<P>' P1</ B></ P>
</ TD>
</ TR>
<TR>
<TD W DIrH=180>
<P>Setting of Limt:</P>
</ TD>
<TD>>
<P>' P2</ B></ P>
</ TD>
</ TR>
</ TABLE>
</ FONT></ P>

<P>Change the |imt:

</ B><TABLE BORDER=0 BGOOLOR="#FFFFFF" >
<TR BGOOLCR="#FFFFCC' >
<TD W DrH=180>
<P>Limt = 2</ A></P>
</ TD>
<TD W DrH=180>
<P>Limt
</ TD>
</ TR>
<TR BGOOLCR="#FFFFCC' >

4</ A></ P>

Chapter 4: BASIC Stamps on the Net 239

<TD W DTH=180>
<P>Limt = 6</ A></P>
</ TD>
<TD WDTH=180 BGOOLOR="#FFFFCC'>
<P>Limt = 8</ A></P>
</ TD>
</ TR>
</ TABLE>
</ FONT></ P>

<P> ML</ FONT></ P>

<P>

<HR>

Last nodified: 28.02.2001</ FONT></ P>
</ BCDY>

</ HTM_>

Listing 24 User Program (LIMIT.HTML)

Chapter 5: Using a Modem 241

5 Using a Modem

In the past few decades the classic text-orientated approach to transmit messages underwent
astounding enhancements. Now that we have a worldwide network with the internet, the
transmission of all kinds of messages like text, pictures, music as well as data for control and
measuring of remote devices is as easy as can be.

The modem is the connection link between the an analog phone line and a data processing
device using a RS-232 connection.

Most PC users are connected to the internet with an analog modem. As time process more
connections are made with direct digital transmitting using ISDN instead of a modem
connection.

As the trend continues more modems are tossed aside in favor of digital connections.

It is useful and inexpensive to continue using these modems for transmission of controls with
the BASIC Stamp. Modems are suitable for long distance communication with phone-line
connections and analog lines are available in many places. Even modems with a baudrate of
2400 bps are useful for microcontroller-based connections.

5.1 Basic Functions of a Modem

The modem achieves the following for it’s user:

As a standard device to connect with the lines of phone company in a correct manner.
Connect and disconnect for a specific transmission.

Synchronization of baud rates

Evaluation of data stream with security codes for correctness

Temporary storage of data as a buffer between data stream on-line and user behavior (not all
modems)

Data compression

Modems are also in kind of integrated circuits, supplemented with an assortment of external
components like crystals, resistors and so on for using in measuring and control. One of
these is the CH1786 Modem from Cermetec [www.cermetec.com], offered from PARALLAX
as an application kit and in an “AppMod format”.

242 Chapter 5: Using a Modem
5.2 Remote Alarm via Modem
In the following program example the BS2 sends an alarm message using an external

modem. A baudrate of 9600 bps is used.

For receiving the alarm message a PC is connected to a modem, ready to receive messages.
The evaluation of what to do with the alarms isn’'t discussed here. For demonstration using a
common terminal program like Hyperterminal or RS232MON is perfectly suitable.

In our program sample a short string is generated from BS2 to send between the modems.

The alarm event is given by interruption in an alarm line, opening one or more of the switches.

10k

+12

THLRS400

1H

Y
r‘* 2

]
——

=

% | e——Gan]

*“Fﬁﬁﬁ‘
e

i

f
]
=)

i}, Brvss

[

L GHD

[7eTotofe oo e o o e o]

CONM DB2S
alarm contacts

Figure 68 Alarm Circuitry

On the left site we see the DSUB25 connector for modem connection. Pin 6 of the BS2 sends
the data to the modem. A successfully tuned connection between modems has the Data
Carrier Detect (DCT) signal used from Modem output DCD (pin 8 of DSUB25).

This requires a special initializing string: there must be a “ &C1”. This means that “DCD
follows the Carrier”. It is a default part of a standard string.

Chapter 5: Using a Modem 243

Once the connection is started, the DCD signals change from —10V (no connection) to +10
Volts (stable connection). This DCD line is connected to I/O pin 7 of the BS2 with a protection
resistor and protection diodes.

With the SEROUT command the level of the DCD line is tested because an output of an
alarm string is sensed only if the modems are successfully connected. In this case both
modems are connected with the carrier-frequency.

If the connection is not stable after a programmed time (hamed delay) the directive for the
modem alarm is lost and a local alarm is started.

Listing 25 shows the program ALARM.BS2

Coaeee- [Titl@ Jommmmmmmmmmmmmmemm i

File...... al arm BS2

Pur pose. . . al ar m message by phone with BS2 and nmodem
' Author....K aus Zahnert
' Started...95-12-10
' Updat ed. . . 01- 09- 20

T [ProgramDescription J--------------c-mmmmmmoo
' alarmor any other inportant event is narked wth one i nput-pin

' 'going high. Inthis case nodemis initialized, nakes connection wth
' dial and gives alarmto renote station. The connection between sta-

' tions is tested by DD signal. Aternative alarmis giving for

' connectionis failured after dial.

t xdpi n con 6 ‘direct connect. (without line-drv.)
dcdpi n con 7 ' connect ed wi th nodeni DCD- out put
sirenpin con 15 'output to siren/LED

al arm con 4711 "typi cal nunber of al arm message
bdnd con 84+$4000 '9600 Baud, 8nl, inverted node

del ay con 1000 ‘wait for branch

cont act var 1 N14 "pul lup to Vcc with chain of closed
‘contacts to G\D. Going high with
' openi ng one ore nore contacts

244 Chapter 5: Using a Modem

D RS = $8000 'out put sirenpin
| ow sirenpin 'no siren
————— [Miin Code J--------------mommmimme e

start:
if contact = 1 then message ‘alarmif any switch off
goto start

nessage:
serout txdpin, bdnd, ["ATZ', 10,13] 'nodem standard init
pause 2000

‘dial renote station (change the nunber)
serout txdpin, bdmd, ["ATDT 1234567", 10, 13]
pause 2000

' out put al ar m nessage
serout txdpi n\dcdpi n, bdnd, del ay, si ren, ["ALARM =", dec al arm 10, 13]
pause 3000

serout txdpin, bdnd, 10, [" +++"] ‘return to command- node
pause 3000

serout txdpin, bdnd, ["ATH', 10, 13] " hang up

goto start
siren:
hi gh 15 'siren/LED on
goto start "try again al armnessage if contact = high

end

Listing 25 Alarm transmitted by a Modem (ALARM.BS2)

The message loop is for new or repeated calling for continuation of the alarm. A local alarm is
for manual resetting only (/O pin 15 goes low). This is possible with a new start of the
program or with the reset-key.

Note that the RS232 signals have a level of about +/-10 Volt. The signals on the DSUB25
connector are a negative voltage in the in-active state, aligned with the TTL level Hi.

The hardware exchange from TTL to RS232 is made by changing the voltage and inverting
the signals. The RS232 signals are active-low, the corresponding TTL signals are active-high
and the aligned RS232 voltage is about -10 Volt.

A commonly utilized integrated circuit between TTL and RS232 (such as the MAX232) is not
required for the BASIC Stamp because the SERIN and SEROUT commands are

Chapter 5: Using a Modem 245

programmable for a “inner inversion”. The input signal of the BASIC Stamp is determined
using a 24 kQ resistor to limit the current.

Although input ports of the BASIC Stamps have inner clamping diodes to protect against
dangerous voltages, additional diodes for limiting the voltage were added to 1/O pin 7.

The output of the BASIC Stamp to the modem is TTL and the RS232 switching threshold
requires only some positive voltage.

In a direct connection, the signal-polarity inversion is solved by the BASIC Stamp,
programmed in its software in the SEROUT command.

In addition the modem needs two initializations with hardware connections. With this the
BASIC Stamp is ready for data input and output without using the handshake signals.

This connections are:

Connection from CTS (modem output “Clear To Send”) to RTS (modem input “Ready to
send”), shown with pin 5 and pin 4 of the DSUB25 connector.

With a connection from DTR (modem input “Data Terminal Ready”) to the positive power
supply voltage the modem gets the message that a device is connected, ready for data-
transfer (DSUB25 pin 20 with resistor 10 kQ to + 12 Volt)

The alarm input of the BS2 is I/O pin 14. A Pull-Up resistor of 10 kQ provides high level on this
pin if one of the alarm-contacts is opened. The alarm contacts work in chain from this pin to
GND. These alarm contacts can be mounted on different devices that should be protected
with them. The principle of closed contacts in connection with current in the alarm line in case
of no alarm is a reasonable solution to identify a cut alarm line.

If the dialing process is not successful, the local alarm starts by switching I/O pin15 to high.
An LED is used for simulating the local alarm.
Some additional discussion about communicating with the modem would be helpful.

Compared to other transmission devices on the end of phone lines (phone, fax, modem)
signals are interchanged in followed order:

Starting the connection (dialing a remote station with a phone number)
Verifying/confirmation of the connection
Transmission of messages and/or data

Disconnecting from remote station

246 Chapter 5: Using a Modem

For the modem control signals to be transmitted they must be in agreement with the remote
station about baud rates and format.

Shown here are examples for baudrate and format of the bytes. There is more full-scale
information to develop a more specialized transmission protocol. These controls are mostly
used by the modem. Nearly all these controls are ASCII-strings, marked with “AT” on the
beginning. These “Command Mode” signals are from the standard Hayes command set.

We use the following commands in the program ALARM.BS2:

ATZ Modem standard initialization. State is based from initializing string, which is programmed and stored before.
ATD <dial-number> Tone dialing the remote station

+++ Escape Code (modem switches from transparent mode back to command mode)

ATH Disconnects the modem (similar to hang up the phone)

If all settings used for the modem operation are preset and if the dialing was successful then
the modem switches from “command mode” to “transparent mode”.

This means that all following data will transmit through the modem without any obstacles. So it
is “transparent” to these signals. The transmitted data is transformed to different tones sent to
the phone line and which are re-transformed to digital signals by the receiving modem.

These are only the basics to understand the example. RS232 is a very old serial transmission
protocol, but having some understanding of it helps comprehend the example.

Chapter 6: Additional Applications 247

6 Additional Applications

6.1 Switching High Currents and Voltages

The electrical features of the BASIC Stamp’s I/O pins limit the direct control of higher currents
and/or voltages.

The BS2p’s SX28AC/48AC can source/drive a current of 30 mA. The PIC16C57 of the BS2
can source 25 mA but only drive 20 mA.

The voltage on an I/O pin may not exceed the supply voltage.
If you want to switch higher currents and/or voltages you have to look for other solutions.

Beside relays and transistors we can control HEXFETs directly from the BASIC Stamp.
Relays and transistors must be driven from the I/O pin. To drive HEXFETs from an I/O pin it
needs almost no power. Data from two different HEXFETs are listed in the following table as
an example:

IRL7601 IRL2203

Max. Drain-Source-Voltage 20V 30V
Max. Draincurrent 46 A 82 A
Min. Gate-Source-Threshold-Voltage 0,7V 1V

Figure 69 shows driver using n-channel MOSFET (HEXFET), NPN-bipolar transistors and
relays. We use a protection diode to prevent damage to the BASIC Stamp. If there is no
inductivity we need no protection diode.

248 Chapter 6: Additional Applications

WO WCC WCC
(o] 1 i
L 0 i 0 L D
RE
— EE] | el
e MPN]
MOSFET_M
N 57
GND GHD GNDGHDO

Figure 69 Driver

Pay attention to the following:

n-channel MOSFET

The gate-source-threshold-voltage of the n-channel MOSFET must be between the low and
high level on an I/O pin of the BASIC Stamp.

Do not exceed the maximum drain current.

The supply voltage Vcc may not exceed the maximum allowed drain-source voltage.

npn-bipolar transistor

The current amplification factor of the transistor must be high enough so that the I/O pin can
drive the required current.

The purpose of the resistor RB is to limit the current from switching the transistor, but limiting
the current to avoid exceeding the maximum allowed basis current.

Do not exceed the maximum collector current.

The supply voltage Vcc may not exceed the maximum allowed collector-emitter voltage.

Chapter 6: Additional Applications 249

Relays
The /O pin can drive the current switching on the relays.
The contact of the relays must be suited for the current of the voltage to be switched.
The supply voltage of the relays can differ from the supply voltage of the driver.

Pay attention to the isolation between the driver and the load circuit. Relays serve as potential
separator but the required isolation resistance should be ignored.

Consider these guidelines for further combinations you might want to arrange. Figure 70
shows some enhanced drivers.

.
D
r—
e
D
r—
5
L]
D

Hel

& RE v
Q Q D li—]
MOSFET_N NPN_DAR R
=
RLED _:l_r;j
GHOD GHD GHD GHD MPM GNDG‘{NFD

Figure 70 Enhanced Driver Circuits

The n-channel MOSFET was supplemented with an optocoupler. The load circuit is separated
from the microcontroller this way.

To drive higher currents with a bipolar transistor and to avoid an overload on the I/O pin we
can replace the simple transistor with a Darlington type.

If the relays need more current than the 1/O pin can drive or source a transistor can help.

250 Chapter 6: Additional Applications
6.2 Networking of BASIC Stamps using RS-232 and RS-485

6.2.1 Point-to-Point Connection

If the BASIC Stamp can communicate with a PC via RS-232 then it should be possible to
exchange data between several BASIC Stamps. The required connections are very simple.
Figure 71 shows two serial connected BS2.

Lt Lz
—| souT WIN —— —{ sout WIN ——
— 15N 1 — — 15N 1) —
—{ ATH RES —— —{ AT RES ——
— {wss Wvoo —— — fwas oo ——
—{ o P15 —— — | P15 ——
—m P14 —— —1p P14 ——
—1rm JEJ) — —1m P13
— |z Plz —— —|rs PIz ——
¥} I — — P4 T —
—|ps PI0 —— —|ps Pi0 f—
—{ps Pa P& Pa Ly
—|rr Pa —|rr Pi
LED
BSZ-1C BEZ-IC
e;.

(7]
=
L]

Figure 71 Serial Communication between two BS2

In both BS2s I/O pin 8 is setup as a serial input RxD and I/O pin 9 as serial output TxD. The
BS2 marked U1 serves as the master, while that BS2 marked as U2 is the slave. The LED
connected to I/O pin 10 signalizes the activity of the slave.

A simple example explains the communication between the two BASIC Stamps.

In our example the master can send only two commands (“1” or “0”) to the slave. The slave
interprets these commands and set I/O pin 10 after receiving a “1”. If the received command
was “0” it resets this I/0 pin. The LED connected signalizes the state immediately.

The slave sends a return value back to the master to get an acknowledge of the action. After
receiving a “not interpretable” command the slave sends $FF as return value back.

Listing 26 shows the communication program of the master, while Listing 27 shows those of
the slave.

Chapter 6: Additional Applications 251

BT [Title Jo-mmmmmmm e
File...... COVWM M BAS

' Purpose... GCommunication between two BASI C Stanps

' Author.... d aus Kihnel

' Started... 30.09.94

' Updated... 24.09.01

' Two BAS C Sanps are connected over R232.

The naster stanp sends a coomand to swtch an output of the slave.
Ater swtching the slave reads this output an gives the state

' back to the naster.

' 30.09.94: Version 1.0 for BS1
' 24.09.01: Version 2.0 for BS2

RxD con 8
XD con 9
baud con 396 ' T2400 for BS2

————— [Variables J----------ccmmommmn e

retval var byte 'return byte fromthe sl ave
command var byte 'command byte for the sl ave

pause 100
start: command = "1" 'send command byte
gosub send
command = "0" 'send anot her command byt e
gosub send
goto start ‘repeat endl ess

————— [Subroutinegs J---------c--omomm e
send: 'send the command to the slave

serout TxD, baud, [comrand]
serin RxD, baud, [retval] "l ook for return byte

252 Chapter 6: Additional Applications

‘debug ? retval
pause 1000 ‘wait alittle bit
return

Listing 26 Serial Communication by the Master (COMM_M.BS2)

TR [Title J---mmmmmmmm e
" File...... GOW S. BAS

' Purpose... GCommunication between two BASIC Stanps

" Author.... @ aus Kihnel

' Started... 30.09.94

" Updated... 24.09.01

' Two BAS C Sanps are connected over R232.

' Anaster stanp sends a conmand to swtch an output of the slave.
' After swtching the slave reads this output an gives the state
' back to the naster.

30.09.94: Version 1.0 for BS1
' 24.09.01: Version 2.0 for BS2

' { $STAWP BS2p} ' speci fies a BS2p
————— [Constants J---------c-oommmmmmi oo

RxD con 8

TxD con 9

QJT con 10

Baud con 396 ' T2400 for BS2

retval var byte 'return byte to the slave
command var byte 'conmand byte fromthe slave

- [Maiin Code J------------------mommim i
start: 'l ook for a coomand fromthe naster

serin RxD, baud, [comrand]

if coomand = "1" then PinH ‘set pin H

if coomand = "0" then PinLo 'set pin Lo

Chapter 6: Additional Applications 253

goto error 'conmmand invalid
Pi nLo: | ow QUT 'set pin Lo
retval = inl0 ‘read pin
goto send 'send state back
Pi nH : hi gh QUT "set pin H
retval = inl0 'read pin
goto send 'send state back
error: retval = $FF ‘"wWite errorcode to return byte
send: serout TxD, baud, [retval]
goto start 'repeat endl ess

Listing 27 Serial Communication by the Slave (COMM_S.BS?2)

You can see from the listings that the serial communication of the BASIC Stamps works half-
duplex in principle — it will be sent or received.

If there are two BASIC Stamps connected via two lines then only one is active at a time. That
suggests the desire to save the inactive serial line.

The following program example shows how that it is possible. Only slight changes to the two
listings are necessary:

Changing RxD con 8 to RTxD con 8

Comment the line TxD con 9 (/O pin 9 is not used for communication now)
Changing RxDand TxDto RTxDin all instructions

Adding a Pull-Up resistor from 1/O pin 8 to VCC

Here are some hints for a reliable data exchange. Figure 72 shows the timing of the one-line
serial connection.

254 Chapter 6: Additional Applications

MASTER 1]
SEROUT | SERIM

SLAVE M ITTTTTIT1 I —
SERIN Data Line State undefined | SEROUT

Figure 72 Timing of the one-line serial connection

Immediately after sending the command byte the master switches to receive mode to avoid
loosing the byte being sent back from the slave.

The slave sends it's returned value only after hi gh out and | ow out are finished. This time
is shown in Figure 72 marked with (1) when the I/O pins of both BS2s are switched to input
and the data line has an undefined state — it floats. Each disturbance on this data line could be
interpreted as start bit for a new data transmission and the synchronization of the both BS2 is
lost - the system hangs.

The problem described is solved for the inverting mode of the serial interface by the pull-up
resistance between data line and Vcc. During the time in which the I/O pins of both BS2s are
switched to input, the pull-up resistors produce a defined high state on the data line.

6.2.2 BASIC Stamp Network

All BASIC Stamps can be networked.

The BASIC Stamp network described as next consists of one master and two slaves. Figure
73 shows our small network consisting of three BS2.

Chapter 6: Additional Applications 255

R
uf Uz E Uz
1k

—— souT WN —— —— s0uUT WM —— ——— F0UT WN f——
——{5IN WeE —— JR— T WeE —— J— 1T WeE
— [ATH RES —— — AN RES —— — ATH RES ——
—{wss woD —— —weg woD |——o — 1 uEE voo ——
— P P15 f—— — PO P15 f—o — PO P15 f—
—1F P —— JR— Pid —— — A P4 ——
R [S— — Pz P13 —— — P2 [S—
R Pz —— R P12 —— — P P1z —
—1 P4 P11 f—— — P4 P11 f—— — a4 Pl f——
—1Ps5 P10 —— —P5 P f—— — P P10 —
R Pg — P8 FQ — P PO
— 17 2] — 7 P R P

BE2-1C Master BE2-1C Slave # 1 BE2-1C Slave # 2

Figure 73 BASIC Stamp Network

I/O pin 8 serves as the receive line (RxD), while I/O pin 9 is transmit line (TxD) for all BASIC
Stamps in the network.

The serial inputs of the slaves are driven by the serial output of the master without any
problems. The serial input of the master is driven by the two serial outputs of the slaves.

In order to prevent electrical problems, these serial outputs must be operated as open-drain
outputs with pull-up resistors. That represents an OR operation (wired-OR) of the serial
outputs of both slaves. Our next program example proceeds from the following conditions:

The master sends addressed commands to the slaves.
The addressed slave sends a command. The other slave ignores this command.
After execution of the command the slave sends an answer to the master.

The answer can be evaluated only by the master.

Listing 28 shows the source of the program for our BS2 network master. The addresses
“A_Node” and “B_Node” were assigned to the two attached Slaves. A command byte
activates an assigned function into the slaves. In our example the commands “0” and “1” are
permitted exclusively. After sending a command to a slave the master waits for a response
from the addressed slave. A timeout of one second prevents endless waiting if the slaves

256 Chapter 6: Additional Applications

send no answer. The end of the program loop is marked by the character “>” in the Debug
Window.

T [Title J-------cmmmmmemi e
File...... MASTER. BS2
Purpose... Denonstration of a BASIC Stanp network

" Author.... @ aus Kihnel

' Started. .. 8.10. 94

' Updated... 24.09.01

In this denonstration three BAS C Sanps bui | d a network.

' The naster sends conmands to the two sl aves naned A Node and

' BNode. After execution the required function the sl ave sends a
return val ue back to the naster. This return val ue is displ ayed
' by DBBUGin this denonstrati on.

8.10.94: Version 1.0 for BS1
24.09.01: Version 2.0 for BS2

T [Drectives J----------mmmmmmi i

RxD con 8

D con 9

LED con 10

baud con 396 ' T2400

t out con 1000 ' Timeout 1 sec

retval var byte
command var byte

start:
comrand = "1"
serout TxD, baud, ["A Node", command] 'send "1" to A Node
serin RxD, baud, tout,tlabel, [retval] 'wait for ret val ue
debug ? retval

Chapter 6: Additional Applications 257

pause 500

serout TxD, baud, ["B _Node", command]'send "1" to B_Node
serin RxD, baud, tout,tlabel, [retval] 'wait for ret val ue
debug ? retval

command = "0"

serout TxD, baud, ["A Node", conmand]'send "0" to A Node

serin RxD, baud, tout,tlabel, [retval] ‘wait for ret val ue
debug ? retval
serout TxD, baud, ["B Node", conmand] ‘send "0" to B Node
serin RxD, baud, tout,tlabel, [retval] ‘wait for ret value
debug ? retval
debug ">"
goto start 'repeat endl ess

t1 abel :
debug "Ti meout - no answer fromany slave!", CR
goto start

Listing 28 BS2 Master (MASTER.BS?2)

In the next two programs all the slaves have to do is to set or reset an I/O pin based on the
command they receive. The LED connected to I/O pin 10 signalizes the state.

Both slave programs (Listing 29 and Listing 30) are unique. Serial input and serial output work
with different baud modes. The serial outputs operate as Open-Drain (OT2400) to allow the
wired-OR of both outputs with the external pull-up resistor.

BT [Title J------cmmmmmm e
" File...... SLAVEL. BS2

Purpose... Conmunication in BASIC Stanp Network - Slave #1
' Author.... daus Kihnel
' Started. .. 8.10. 94

Updated. .. 24.09.01

" Inthis denonstration three BAS C Sanps build a network.

' The naster sends conmands to the two sl aves naned A Node and

' BNode. After execution the required function the slave sends a
' return val ue back to the naster.

' 8.10.94: Version 1.0 for BS1
' 24.09.01: Version 2.0 for BS2

258 Chapter 6: Additional Applications

RxD con 8
TXD con 9
LED con 10
baudi n con 396 ' T2400

baudout con 396+$8000 ' Or2400

start:
serin RxD, baudin, [wait("A Node"), comrand]
if command = "1" then LEDON
if coomand = "0" then LEDOFF
goto start

LEDON
hi gh LED
serout TxD, baudout, [command]
goto start

LEDCFF:
| ow LED
serout TxD, baudout, [comrand]
goto start

Listing 29 BS2 Slave # 1 (SLAVE1.BS2)

Chapter 6: Additional Applications 259

BT [Title J------cmmmmmm e
File...... SLAVE2. BS2

' Purpose... GCommunication in BASIC Stanp Network - Slave #2

' Author.... daus Kihnel

' Started. .. 8.10. 94

' Updated... 24.09.01

" Inthis denonstration three BAS C Sanps buil d a network.

' The naster sends commands to the two sl aves naned A Node and

' BNode. After execution the reguired function the slave sends a
' return val ue back to the naster.

' 8.10.94: Version 1.0 for BS1
' 24.09.01: Version 2.0 for BS2

BT [Constants J----------------m-mmmmmo

RxD con 8
TxD con 9
LED con 10
baudi n con 396 ' T2400

baudout con 396+$8000 ' Or2400

BT [Variables J----------------ommmm

serin RxD, baudin, [wait ("B Node"), conmand]

if coomand = "1" then LEDON
if coomand = "0" then LEDCOFF
goto start

LEDON

260 Chapter 6: Additional Applications

hi gh LED
serout TxD, baudout, [comand]
goto start

LEDOFF: | ow LED
serout TxD, baudout, [command]
goto start

Listing 30 BS2 Slave # 2 (SLAVE2.BS2)

6.2.3 Scalable Node Address Protocol S.N.A.P.

High Tech Horizon from Sweden [www.hth.com] developed S.N.A.P. (Scalable Node Address
Protocol), a communication protocol for their Powerline Modems PLM-24. The goal was to
build a protocol that could be implemented in smaller microcontrollers without a large
overhead.

The High Tech Horizon web site offers much information about S.N.A.P. and the PLM-24
Powerline Modems. Here we are limited to the necessary setup for letting BASIC Stamps
communicate over a network.

Data exchange between network nodes takes place in the form of packages. These data
packages may have a different length (number of bytes). The length of a data package
depends of the number of address and data bytes, the error detection method and some
special bytes.

The following example shows a S.N.A.P. data package with 1-Byte addresses, 2-Byte data
and a CRC-16 error detection. These data packages are used in our program example later.

PRE |.. |SYNC (HDB2 |HDB1 |DAB1 |SAB1 |DB2 (DBl |CRC2 |CRC1

Each data package begins with preamble bytes before the synchronization byte. The number
of preamble bytes is not important. The header definition bytes (HDBXx) define the structure of
the data package. Table 14 explains the meaning of the bytes in the data package.

Chapter 6: Additional Applications 261

Byte Name

PRE Preamble Byte

SYNC Synchronization Byte
HDB2 Header Definition Byte 2
HDB1 Header Definition Byte 1
DAB1 Destination Address Byte
SAB1 Source Address Byte
DB2 Data Byte 2

DB1 Data Byte 1

CRC2 High byte of CRC-16
CRC1 Low byte of CRC-16

Table 14 S.N.A.P. Data Package

The data package described in Table 14 has a length of eight bytes (without preamble and
synchronization bytes). The bytes have their LSB in the right most position (Bit7...Bit0).

Synchronization Byte - SYNC
The byte SYNC is predefined and marks the begin of each data package.

Bt 7 6 5 4 3 2 1 0 HEX DEC
[0 |1 [o |1 o |1 [o |o | 54 84

Header Definition Bytes (HDB2 and HDB1)

Both the header definition bytes HDB2 and HDB1 define the structure of the data package.
The definition here is used in our program example later.

262 Chapter 6: Additional Applications

Bit 7 6 5 4 3 2 1 0 HEX DEC
HDB2 DAB SAB PFB ACK
0 |1 [o |1 Jo [o o |1 51 81
HDB1 C |EDM NDB
0 |1 |o [o o [o |1 |o 42 66
Table 15 describes the meaning of the bits in HDB2 and HDB1.

Bits Meaning Code Definition
DAB Number of Destination Address Bytes 01 1 Byte
SAB Number of Source Address Bytes 01 1 Byte
PFB Number of Protocol specific Flag Bytes 00 no
ACK ACK/NAK Bits 01 yes
C Command Mode Bit 0 no
EDM Error Detection Method 100 CRC-16
NDB Number of Date Bytes 0010 2 Byte

Table 15 Meaning of the Bits in HDB2 and HDB1

If the transmitter sets ACK = 01 then it expects ACK (10) or NAK (11) in response to the
receiver. This acknowledge mechanism is implemented in the program example SNAP-

| Q BS2.

The command mode is a feature in bigger networks and is not used here.

In our program example we used the BS2 as a slave. This means the BS2 waits for a

command executes it and send a response back to the master.

To detect errors during data exchange we use a CRC-16 algorithm for error detection. In the
response to the receiver ACK/NAK tells the transmitter the state of the data exchange.

In case of an data transmission error the package can be sent again, for example.

Listing 31 shows the source of an BS2 Slave working according to S.N.A.P.

Chapter 6: Additional Applications 263

e [Title J--mmmmmmmm e e
File......: SNAP-1Q BS2

' Purpose...: Turns LEDs on and of f

' Author....: Chriser Johansson

' Version...: 1.01

' Stanp.....: BS2-1C
Started...: 98-05-03

' Updated...: 98-09-18
' Mdified..: 99-06-13 by daus Kuhnel

' This programshows howto inplenent the SNAP protocol in aBX-IC
‘‘and is an sinpl e exanpl e to turn LH N or OF~

' This exanpl e uses 16-bit GRC G TT as error detection nethod whi ch

' gives secure data transfer.

' If the node i s addressed by another node (PC or another M) then
' the lower 4 bit of DBL val ue are displayed by QJIC (H n11-8) for
' BASC Sanp Activity Board.

' The packet structure is defined in the recei ved packets first two
' bytes (HB2 and HBL). The foll ow ng packet structure is used.

' DD=01 - 1 Byte destination address
' SS=01 - 1 Byte source address

' PP=00 - No protocol specific flags
' AA=01 - Acknow edge i s required

' D=0 - No Command Mode

' EEE=100 - 16-bit CRGCATT
' NNN\N=0010 - 2 Byte data

' Overview of header definition bytes (HDB2 and HDB1)

fecccccoccooocoo=o fccccsccooocoooos +

" | DDSSPPAA| DEEENNNN|
I decsscccsccsscss== dmsccsssccosccssoo +

TxD con 16 ' Serial output pin

RxD con 16 ' Serial input pin

LEDS con %4111 ' LED out put s

Baud con 80 ' Baudrate (9600 bps 8N1)
Preanbl e con 991010101 ' Preanbl e byte

SYNC con 991010100 ' Synchroni zation byte
CRCPCLY con $1021 ' CRCATT

cHDB2 con $51

cHDB1 con $42

264 Chapter 6: Additional Applications

M/Addr ess con 123 ' Address for this node (1-255)

CRC var word ' CRC Word

LoCRC var CRC. lowbyte ' CRC Lo Byte

H CRC var CRC highbyte ' CRC H Byte

HDB1 var byte ' Header Definition Byte 1
HDB2 var byte ' Header Definition Byte 2
DAB1 var byte ' What node shoul d have this paket
SABL var byte ' What node sent this packet
DB1 var byte ' Packet Data Byte 1

DB2 var byte ' Packet Data Byte 2

(02,02 var byte ' Packet CRC H _Byte

CRCL var byte ' Packet CRC Lo_Byte

TrpByt el var byte ' Tenporary Variabl e

TnpByt e2 var byte ' Tenporary Variabl e

————— [Initialization J-----------ccncommmmmaiie oo

Drc = LEDS ' Set pin 11 to 8 as outputs

DBlL =0 ' Oear Data variable

DB2 =0

T [Program]---------------ommmmim i
Start

" Wit for SINChyte, if received read next eight bytes fromnaster
serin D Baud, [wait(SYND, HOR2, HIBL, DABL, SABL, DR2, OBl, (R2, (RCY]

debug cls, "Received data:",cr
debug dec4 HDB2, dec4 HDB1
debug dec4 DAB1, dec4 SABL, cr
debug dec4 DB2, dec4 DBl
debug dec4 CRC2, dec4 CRCL,cr

' Packet header check routine

' Check HR2 to see if STAW Il are capabl e to use the packet
structure, if not goto Start
if HDB2 <> cHDB2 then Start

' Check HBL to see if STAW Il are capabl e to use the packet
structure, if not goto Start
if HDBL <> cHDB1 then Start

Addr ess check routine

Check if this is the node addressed, if not goto Start
if DABL <> M/Address then Start

Chapter 6: Additional Applications 265

' Check CRC for all the received bytes
gosub checkcrc

' Check if there was any CRC errors, if so send NAK
if CRC <> 0 then NAK

No CRC errors in packet so check what to do.
Mask the | ow ni bbl e of DB1 and switch LEDs

Associ ated Function (place it between +++ |ines)

B e e e B B A

outc = dbl & $OF
B T

ACK:
' Send AXK (i.e tell master that packet was CK)
' Set ACKs bit in HDB2 (xxxxxx10)
HDB2 = HDB2 | 90000010
HDB2 = HDB2 & 941111110
goto send

NAK:
Send NAK (i.e tell naster that packet was bad)
' Set ACK bits in HDB2 (xxxxxx11)
HDB2 = HDB2 | 990000011
goto send

Send:
' Swap SABl1 <-> DABL address bytes
TnpByt e2 = SAB1

SABl1 = DAB1

DABL = TnpByte2

' Qear CRC variable
CRC=0

Put HDB2 in variable TnpBytel
TrpByt el = HDB2
' Calculate CRC
gosub cal ccrc

' Put HDBL in variable TnpBytel
TrpByt el = HDB1

Cal cul ate CRC
gosub cal ccrc

' Put DABL in variable TnpBytel
TnpByt el = DABL

Cal cul ate CRC
gosub cal ccrc

Put SABL in variabl e TnpBytel

266 Chapter 6: Additional Applications

TX:

TnpBytel = SABL
' Calculate CRC
gosub cal ccrc

Put Data in variable TnpBytel
TnpByt el = DB2
' Calculate CRC

CGosub cal ccrc

Put Data in variable TnpBytel
TnpBytel = DBl
' Calculate CRC
Gosub cal ccrc

Move cal cul ated H CORC val ue t o out goi ng packet
CR2 = HCRC
' Move cal cul ated LoCRC val ue to outgoi ng packet
CRC1 = LoCRC

debug cr,"Sent data:",cr

debug dec4 HDB2, dec4 HDBL
debug dec4 DAB1, dec4 SAB1, cr
debug dec4 DB2, dec4 DBl
debug dec4 CRC2, dec4 CRCL,cr

' Send packet to naster, including the preanbl e and SYNC byte
serout TxD baud, [Preanbl e, SYNG HOR2, HOBL, DABL, SABL, DR, [B1, R2, (RCl]

' Gve STAW tine to shift out al bits before setting to R«
Pause 50

' Done, go back to Start and wait for a new packet
goto start

Chapter 6: Additional Applications 267

" Subroutine for checking all received bytes in packet

checkcrc:
CRC=0
TrpByt el = HDB2
gosub cal cCRC
TnpBytel = HDB1
gosub cal cCRC
TrpByt el = DAB1
gosub cal cCRC
TnpByt el = SABL
gosub cal cCRC
TrpByt el = DB2
gosub cal cCRC
TnpBytel = DBl
gosub cal cCRC
TrpByt el = CRC22
gosub cal cCRC
TnpBytel = CRCL
gosub cal cCRC
return

Subroutine for calculating CRC val ue in variabl e TnpByt el
cal ccrc:
CRC = TnpBytel * 256 ~ CRC
for TnpByte2 = 0 to 7
if CRCBitl5 = 0 then shiftonly
CRC = CRC * 2 » CRCPALY
got o nxt
shiftonly:
CRC=CRC* 2
nxt :
next
return

Listing 31 S.N.A.P. Slave (SNAP-I0.BS2)

The program shown in Listing 31 waits to receive a SYNC byte to read the following eight
bytes according to the protocol definition.

Once the network node is addressed (M/Adr ess con 123) all bytes received are checked
with the CRC-16 algorithm for correct data exchange.

If the CRC-16 Check detects no error then the Acknowledge Bits in HDB2 are set to 10 and
the associated function is executed by the network node.

268 Chapter 6: Additional Applications
This function is marked by comment lines (++++) in the listing. In our case the LEDs on the
BASIC Stamp Activity Board display the Low Nibble of the data byte DB1.

If the CRC-16 Check detects an error then the Acknowledge Bits in HDB2 are set to 11 and
the associated function is not executed.

At the end the slave sends a data package back to the master for it's analyzing.

For test purposes the program SNAP-IO0.BS2 contains several DEBUG commands. They're
for a later example and can be commented.

This S.N.A.P. implementation was tested with the BASIC Stamp Editor StampW.

To send two data bytes with the values $AA and $55 to the BS2 we have to send the following
data package:

SYNC |HDB2 |HDB1 |DAD |SAD |DB2 DB1 CRC2 |CRC1
84 81 66 123 1 170 85 243 96

Figure 74 and Figure 75 show the outputs in the Debug Window (overlayed by the output of
the SEROUT command).

Each byte is represented by a four-digit decimal number because the simplest way for number
input is the number block of the PC’s keyboard. For example, to input the decimal number 81
you have to key the 0 8 1 with an Alt-Key. Releasing the Alt-Key finishes the number input.

Chapter 6: Additional Applications 269

% Debug Terminal

Carn Part: Baud Fate: Farity: [1ata Bits: Flowa Contral: @ T< [OTR [RATS
| EZENZ | EEINNE [T [ERE | IEZ | e
TQRE{ UG =

(Eaptires.. Macro Keys... Pausze Cloze

Figure 74 Data Package with correct CRC

Debug Terminal

Comn Part: Baud Rate: Farity: Data Bit: Flova Contral; @ T% [DIR [RIS
fcomt Elffoeoo EISNone FEe Eof EI R @ DSR @ £TS
TQE{ 374" TQE{ 2da =

[Eapture.. Macro Keys. . FPauze Cloze

Figure 75 Data Package with Incorrect CRC

270 Chapter 6: Additional Applications

Figure 74 shows the error free transmission of a correctly entered data package. The
Acknowledge Bits in HDB2 of the response data package are 10 so the value of HDB2 is 82
(=$ 52). The data bytes are unchanged here.

To test a faulty data transmission (Figure 75) the byte CRC1 was incorrectly entered. The
correct value is 96 but 97 was entered. The CRC Check detects this error as a transmission
error and sets the Acknowledge Bits to 11, so HDB2 has the value 83 ($ 53) now.

6.2.4 Data Transmission According to RS-422 and RS-485

The data communication between a PC and BASIC Stamp and/or between several BASIC
Stamps, regarded so far, took place according to RS-232. However this kind of the data
communication is suitable only for short distances.

For a wired data communication over longer distances the electrical conditions of the
connection are increasingly important. Twisted two-wire lines with a correct termination can
serve as an electrical connection between transmitters and receivers.

RS-422 and RS-485 are symmetrical interfaces for transmission and enhance the traditional
possibilities while overcoming the restrictions of the RS-232 interfaces.

RS-422 or RS-485 have the following characteristics:
e Maximum data rate of 10 Mbit/s.
¢ Maximum length of connection 1200 m.
e Symmetric data transmission to avoid electrical disturbances.

Not all characteristics of these interfaces are relevant for BASIC Stamp applications. But, if
data can be transferred several hundred meters over a twisted two-wire, that is already an
outstanding result.

RS-422A is a special version of RS-422 and enables data transmission in one direction
(simplex). There is one transmitter which can interface to several receivers.

RS-485 is an enhancement of the RS-422 interface and makes a bi-directional data exchange
(half-duplex) possible via a twisted two-wire line.

Table 16 and Figure 76 show several features of the interfaces according to RS-422A and
RS-485.

In the upper half of Figure 76 a transmitter drives a symmetrical line terminated by a 100 ohm
resistor. According to the RS-422A standard up to ten receivers can be connected.

The lower half of Figure 76 shows a bi-directional bus system according to RS-485. Up to 32
Transceiver (that means transmitter and receiver) can be networked.

Chapter 6: Additional Applications 271

RS-422A RS-485
Common Mode Input VVoltage SIV..+7TV -7V, .+12V
Receiver Input Resistance 4 kQ min. 12 kO min.
Driver Load (line termination) 100 Q 60 O
o 150 mAto 150 mA to GND
Short Circuit Output Current GND 250 mMAto -7 V or +12 VV

Table 16 Several Features of Interfaces according to RS-422A and RS-485

Diatadn I
[100

RS422A

Data Qe Diaka Qut Data Qe

120 D |j 120

R5485

Figure 76 Interfaces according to RS-422 and RS-485

272 Chapter 6: Additional Applications

Almost any semiconductor manufacturer offers transceiver devices. Figure 77 shows the inner
circuit of the SN75176A from Texas Instruments as an example.

DE

]

{RE
A
R
E
h—

Figure 77 Inner Circuit of SN75176A

The connectors A and B on the right side denote the symmetrical bus lines. The left side
shows input and output and the associated Enable pins.

For the half-duplex operation according to RS-485 either the transmitter or the receiver works.
Therefore we can connect the Enable pins DE and /RE.

For the BASIC Stamp only small changes are required from the RS-232 protocol. The BASIC
Stamp must control the wired Enable pins by an additional I/O pin. Before a SEROUT
command we have to set DE = /RE = high and must reset afterwards by DE = /RE = low to
activate the receiver.

6.3 Evaluation of GPS Information

The GPS receiver makes numerous information available from satellites. A quite simple but
powerful GPS receiver is the GPS-Mouse from Garmin.

The Garmin GPS-Mouse is a 12-channel receiver with integrated antenna and therefore an
ideal receiver for PC-based navigation or as sensor for microcontroller applications.

The package is completely closed, waterproof and suited for outside applications in a wide
temperature range. The communication is RS-232. Different versions (land, see) offer
appropriate flexibility for various areas of application. Figure 78 shows a picture of the GPS
Mouse.

Chapter 6: Additional Applications 273

Figure 78 GPS Mouse

The GPS Mouse sends the data according to the NMEA protocol.

NMEA is the standard protocol which GPS units use for data exchange. The NMEA interface
can be directly connected with an RS-232 Port of a PCs or a microcontroller. The NMEA
interface works normally with 4800 Baud, eight data bits, one stop bit and without parity
(4800-8N1).

The NMEA protocol consists of sentences of ASCII characters.

A NMEA sentences begins with the character $, followed by the address field (transmitter,
sentence name) and the parameters separated by comma. The NMEA sentence is terminated
by CR/LF. The check sum at the end of the NMEA sentence (before CR/LF) is optional. Not
all GPS receivers send this parameter!

Two important NMEA strings are RMC and VTG.
RMC = Recommended minimum specific GPS/TRANSIT data
VTG = Actual track made good and speed over ground

Both NMEA sentences are given in the common form and as an example. Additional
information to the NMEA protocol can be found at http://vancouver-
webpages.com/peter/idx_fag.html, for example.

The RMC sentence contains date and time (marked bold) and the VTG sentence among
others the speed over ground in km/h (marked bold again).

$GPRMC,hhmmss.ss, A lllLILa,yyyyy.yy,ax.x,x.x,ddmmyy,x.x,a*hh
$GPRMC,162715,A,0000.673,N,00000.673,W,031.0,315.0,270701,000.0,E*64
$GPVTGt,T,,s.s5,N,s.55,K*hh

$GPVTG,315.0,T,315.0,M,031.0,N,057.4,K*4A

The following program example evaluates the speed in the VTG sentence and signalizes the
exceeding of given speed limits.

http://vancouver-

274 Chapter 6: Additional Applications

The BASIC Stamp together with a GPS Mouse can inform a driver when speed limit is
exceeded by flashing a LED or generating an acoustic signal.

T [Title J-------cmmmmmemi e
File...... gps. bs2

' Purpose... Reading of GPS information

' Author.... daus Kuehnel

' Started... 2001-07-27

' Updat ed. . .

The programreads the VIG sentence from NVEA protocol sent
by a GPS recei ver each second.

An LED signalizes a speed over four different

' speed limts.

T [Constants J-----------------“---ooie

B4800 con 188 ' 4800 Baud for NMEA def aul t

RxD con 16 "Serial I/OPNn 16
SpeedLimt1 con 50 "Speed limts

SpeedLi mt2 con 80
SpeedLi mt3 con 100
SpeedLi mt4 con 120

LEDL con 8
LED2 con 9
LED3 con 10
LEDA con 11

————— [Variables J---------c-commmmmiii e -

speed var word
val ue var word

| oop:
' Read the VTG sent ence from GPS
' $GPVTG 315. 0, T, 315. 0, M 040. 0, N, 074. 1, K*48

Chapter 6: Additional Applications 275

serin RxD, B4800, [wait("VIG"), wait(","),
wait(","),wait(","),wait(","),wait(","),wait(","),dec speed]

val ue = 999

| ookdown speed, > [SpeedLi mt4, SpeedLimt3, SpeedLimt2, SpeedLinitl], value

branch val ue, [nBL4, nBL3, nBL2, nBL1]

goto | oop

nBL1:
outc = $F ' LEDs of f
| ow LEDL 'LED1 on
goto | oop

nBL2:
outc = $F ' LEDs of f
| ow LED2 ' LED2 on
goto | oop

nBL3:
outc = $F 'LEDs off
low LED3 ' LED3 on
goto | oop

nBL4:
outc = $F 'LEDs off
| ow LEDA4 ' LED4 on
goto | oop

Listing 32 GPS Speed Display (GPS.BS2)

To test such a GPS program it's not necessary to go for a drive. Here a GPS simulator can
help.

Under www.sailsoft.nl there is a free GPS simulator well suited for this purpose. Figure 79
shows the subject data and the NMEA sentences in the Trace Window.

http://www.sailsoft.nl

276 Chapter 6: Additional Applications

%% GPS NMEA Simulator ¥2.0, Registered by: Claus Kiihnel By] |

Position
Latitude Longitude

000° 00.433'N 000° 00.433' W

Course and Speed

315° 3 28 o

Courze Speed

bagvar UTC affzet UTC Date UTC Time
0 0 firs. 14.08.01 21:071:36

$EPHRML 2TOT 3 2, JUD0C A2 U000, 423,047 L28.10,41 5.00,7 SU80U7 UULLLLE 5L -
$GPYTGE.315.0.T 315.0.028 0. 051,040

$GPRMEC,210135,4,0000.423 M ,00000.428 W/ 028.0,215.0.140801,000.0.E “61
$GPYTGE.315.0.T. 315,04 .028.0.N.051.0,K40

$GPRAMC, 210136 4,0000.433 M, 00000.433 W 028.0,315.0,140801,000.0,E 62
$GPYTGE,315.0,T,315.0 0 025 0,8 051 0,K40

Clear
- Trace

» ! Screen

Figure 79 GPS Simulator

The generated NMEA sentences can be sent by a serial interface of the PC to the BASIC
Stamp or can be stored in a log file.

You can send this log file at any time with a Terminal program to the BASIC Stamp.

The BS2p can save whole data sentences in the Scratch Pad RAM. This way we can work
with higher baud rates. Listing 33 shows the program example adapted to the BS2p. In
addition a serial LCD was attached to display the velocity values.

Chapter 6: Additional Applications 277

BT [Title J------mmmmmmm e
File...... gpsl. bsp

' Purpose... Reading of GPS infornmation

' Author.... daus Kuehnel

' Started... 2001-09-15

' Updat ed. . .

The programreads the VIG sentence from NMEA protocol sent
by a GPS receiver each second.

An LED signalizes a speed over four different

' speed limts.

B4800 con 500 ' 4800 Baud for NMEA def aul t

N2400 con 17405 ' Baudnode- 2400 bps i nverted
RxD con 16 "Serial Data from GPS

LCDpi n con 0 "Serial Data to LCD
SpeedLimt1 con 50 "Speedlinits

SpeedLi mt2 con 80
SpeedLi mt3 con 100
SpeedLimt4 con 120

LEDL con 8 ' Speed LEDs

LED2 con 9

LED3 con 10

LEDA con 11

of f set con 24 "Position of speed value in VIG string
| con 254 "Instruction prefix val ue

LCD control characters

drLC con $01 ‘clear the LCD
Li nel con $80 "addr line #1 | 80H

speed var word
val ue var word

278 Chapter 6: Additional Applications

i dx var byte
tenp var byte(3)

" Initialize the Serial LCD (HD4780 controller & Serial Backpack)

LCD ni :
| ow LCDpi n ' Make the serial output |ow
pause 1000 'Let the LCD wake-up
serout LCDpi n, n2400, [|,d rLCD| 'dear the LCD screen
- [Maiin Code J------------------mommim i
| oop:

' Read the VTG sentence from GPS

' $GPVTG 315. 0, T, 315. 0, M 040. 0, N, 074. 1, K48
"puts serin data in Scratch Pad RAM

serin RxD, B4800, [wait("GPVIG"), spstr 35]

"put offset, 4 : put offset+l, 5 : put offset+2, 6

‘for test
for idx =0to 2 ‘read data from Scratch Pad
get idx+offset, tenp(idx)
next
speed = (tenp(0)-48)*100 ‘convert to nunber
speed = (tenp(1l)-48)*10 + speed
speed = (tenp(2)-48) + speed
serout LCDpi n, n2400, [|, Li nel] " di spl ay speed val ue
serout LCDpi n, n2400, [" Speed = ", dec3 speed, " km h"]

val ue = 999

| ookdown speed, > [SpeedLi mt4, SpeedLimt3, SpeedLimt2, SpeedLimtl], value
branch val ue, [nBL4, nBL3, nBL2, nbL1]

got o | oop

nBL1l:outc = $F 'LEDs off
| ow LEDL 'LED1 on
goto | oop

nBL2: outc = $F ' LEDs off
| ow LED2 'LED2 on
goto | oop

nBL3:outc = $F ' LEDs off
| ow LED3 ' LED3 on
goto | oop

Chapter 6: Additional Applications 279

nSL4:outc = $F ' LEDs of f
low LEDA ' LED4 on
goto | oop

Listing 33 GPS Speed Display (GPS1.BSP)

In both GPS program examples the GPS is connected to I/O pin 16. If a connected GPS wiill
be disturbed by the echoes from this I/O pin then change the constant RxD in Listing 32 and
Listing 33 to another free I/O pin.

6.4 Measuring Tilt and Acceleration

Several years ago sensors with micro-mechanical components improved dramatically. Analog
Devices offers the ADXLxxx family of acceleration/tilt accelerometers at a low price.

The sensor’s output is based on balance of capacitors made with micro-mechanical silicon
arms as a bridge structure. This structure is assembled with some other electronic
components through an etching process. Disturbing this balance with external causes a
continuous PWM signal, whose duty is aligned to external tilt or acceleration.

The result of a external force is the duty T1 of a continuous generated pulse with the period
T2.

T2

e
!

ft— T1 —=

3

0g=50% DUTY CYCLE

Figure 80 Pulse on ADXL202 output

Without influence of an external force the ratio of low to high is 0.5. The frequency of the
following pulses is tuned by the size of two external capacitors chosen by the user.

Integrated within the ADXL202 are filters and amplifiers for producing an aligned analog
output-voltage.

280 Chapter 6: Additional Applications

The ADXL202 sensor generates signals for tilt and acceleration in two directions with two
separate sensors systems structured in a rectangular position on the sensor-chip.

Its an advantage that the ADXL202’s pulse outputs are contacted directly to pins. With the
PULSIN command the pulse-width can be measured immediately by counting. By this way an
A/D converter is not needed.

Some more information from ADXL202 are given with the data sheet from Analog Devices
[www.analog.com/IMEMS/products/ADXL202.html]. With this link are some information and
application examples.

In our example we enhance the circuit with a parallel driven LCD module with the HD44780-
compatible controller. For this kind of LCD the BS2P has the powerful LCD-statements that
we’ll use once again.

The LCD module NLC 16x2x06 is offered by the German warehouse CONRAD, specializing
in electronic components.

In contrast to the RS232- serial controlled LCD-Modules this module is very inexpensive and
we have a comfortable programming interface courtesy of the BS2p.

The disadvantage is the use of more pins for connecting to the LCD module.

So this approach works well for this project, where we have free this pins leftover. In some
cases it is possible to use a single pin for multi-purpose in different parts of the program.

Figure 81 shows the scheme of two dimensional measuring tilt/acceleration with an
alphanumeric display.

Chapter 6: Additional Applications 281

— {ne voo * o5y
— 1w won [T |
— s HFILT
COM YFILT Ix 047 u + 12
) HOUT
JE oot 11
Comt NG —— =TT
SOUT N
SIN WSS
ATN IRES

ADwL202

LCD16x2

1
1t
=
-
©
-
=]

BE2P-IC

L
|
I
I
I
I33E
E]
EE2z
14
1
12
i
[
E]
E
g
5
Y
E

DB7
5]
OBS
OB4
S
OO

Figure 81 Two-dimensional sensor for tilt and acceleration

The 1 MQ resistor on 1/O pin T2 of ADXL202 generates a pulse-period of about 8 ms for the
two output signals XOUT and YOUT. Each low/high response on I/O pins 10 and 11 starts
counting, which is stopped by the high/low response. The resolution for this counting is two
microseconds. Three MP-condensers on ADXL202-pins are for avoiding spikes and are
needed to have a stable result in display. A variable resistor on the LCD is used for calibrating
the contrast.

The program ADXL_2P1.BSP shows the reading of the ADXL202 output and the display of
these values in an endless loop. Because there are no additional tasks done within this
example, a delay of 100 milliseconds is added to the loop.

————— [Title J--mmmmmmmmm e
File...... ADXL_2P1. BSP
Purpose... Denonstration einiger LCD Befehle der BS2P
i n Ver bi ndung Beschl euni gungssensor ADXL202
' Author.... Kl aus Zahnert
' Started... 10.6.01
Updat ed. . .

282 Chapter 6: Additional Applications

Wse PLS Nto neasure two-axis tilt froman ADMA202 and di spl ay
' onthe LAD
- [Rvision Hsory J----------ccmcommommmiia o

' 10.6.01 : Version 1.0

p con 1
Xpi n con 11
ypi n con 10

var byte
var word
y var word
sunx var word
suny var word

start:
sunx = 0
suny = 0
for n=1to 8
pul sin xpin, 1, x :sunx
pul sin ypin, 1,y : suny
next
X =sunx/ 8
y =suny/ 8

unx + x
uny +y

1
w n

debug "x = ", dec5 x, TAB, TAB,"y = ", dec5 vy, cr
gosub di spLCD

pause 100

goto start

| cdemd p, 48
pause 5
| cdcmd p, 48
pause 0
| cdemd p, 48
pause 0

| cdcmd p, 32

Chapter 6: Additional Applications 283

pause O

I cdemd p, 44
pause O

| cdend p, 8

| cdend p, 12
| cdend p, 6

return

di spLCD:
gosub init
lcdout p,1, [" X pos
| cdout p,192,[" Y-pos
return

Listing 34 Evaluation of ADXL202-Informations (ADXL_2P1.BSP)

", dec5 x]
", dec5 y]

To initialize the LCD the Parallax approach is used. Because it is to our advantage to
introduce some delays in timing of the loop by using the PAUSE statement, there is enough
time for a new initialization of the LCD-display. So the first character to display comes to first
position. With this we have the x-message on the upper line.

One problem by using micro-mechanical sensors is to generate a stable signal.
This depends from on the necessary bandwidth and the sampling frequency.

To stabilize the display (see the randomized variations in the display on lowest position of
characters) an average value is calculated from 8 measured values. It should be done with
attention when accumulating these numbers in a word-sized variable. The capacity is limited
by 65535.

For changing the horizontal position to a tilt of 30 degrees, there is a difference in pulses of
about 700 on each channel.

There is some difficulty in using the ADXL202 sensor. Without a special socket or printed
circuit board the sensor is designed as a surface-mounted device (SMD) and it's not easy to
handle with a usual soldering iron. The ADXL202 Evaluation Board is a small PCB that fixes
this problem, available directly from Parallax.

284 Chapter 6: Additional Applications

6.5 Data Display with Stamp Plot Lite

In Chapter 6.4 the measured values are sent to an alphanumeric LCD.

Synchronous to this, the data is displayed in the PC’s Debug Window. This is made by
inserting the program line

debug "X = ", dec5 x, TAB TAB, "Y =", dec5 y,cr

The DEBUG command provides the output of the designated information from BASIC
Stamp’s SOUT /O pin.

Remember that this 1/O pin is used for programming during download and during runtime this
transmission line is used for the DEBUG commands.

While testing programs, the Debug Window of the StampW Editor is an indispensable help,
but it's not a pleasure for visualization of data. Watching numbers scroll down the blue Debug
window lacks visual imagery.

Selmaware Solutions has designed the program “Stamp Plot” for the PC, based on Visual
Basic 6. The Lite version is with free for download from their website
[www.selmaware.com/stampplotlite/home.htm].

Stamp Plot receives data from a serial port of the PC, transmitted from BASIC Stamp with
DEBUG commands. With this data it generates a window for graphical display of the incoming
numeric data as well as the display of ASCII characters like the Debug Window.

With the basic features of this versatile program we’ll see the display of the measured results
from tilt sensor ADXL202. We use the program ADXL_2P1 from Chapter 6.4.

Include a second DEBUG command as follows:

debug "X = ", dec5 x, TAB, TAB, "Y =", dec5 y,cr
debug dec y , cr

Chapter 6: Additional Applications 285

This second line without a part of printed text is an additional output. It is used for graphical
display in a diagram.

Figure 82 shows the opened window of Stamp Plot Lite. All settings done with mouse clicks
in this window. The alternative way is to configure presettings from software with modified
DEBUG commands. Table 17 shows these commands.

___;1 Stamp Plof

ICDM 1 ,I I i ct ‘wihen data points " Stop Plot
¥ Plot Data _Iﬁ'“'3l reach max: (+ Restart
User 5tatus Data Points
| 7a00 b & Current
I 'I 7150, | 1000 | 346
Span 8800, La§l Analog Data
;I ;I Time Walue
B, [1zz08 | [5e2e
it G100, Plot Pointer
i Time Walue
Multplier O [z [5715.
I1 5400, Maximum
g - Time Walue
ave data .
r b file: I‘I 817 |1 4480
Delete <Ey Minimum
[ata File 4350, Tirre Walue
S [z | ez
[0 an, 40, 60, a0, [0 | | Clear Mindan |
[~ Time stamp <1 | ErableShitt Time Spar: +| _- | - Clear rnitna’maH
on resel
Clear Meszages I 4 = 05432 y = 05323 d
w = 15434 yw=05825
g w = 15435 = 05826
Coafle 0 |w-0543 v = 05328
% = 05430 = (15829
Delete Mzg File I % = 05435 y = 05828

Figure 82 Display of Measured Data in Stamp Plot Lite

The parameters for serial transmission (9600 bps, 8 data bits, no parity (9600,8,N,1) and no
handshake were already established by the DEBUG command. However, the PC must be
configured for the appropriate COM-Port and in the program window the connect state must
be activated by clicking it. Be careful when opening the COM-Port (with one device); working
with Stamp Plot Lite means the active Debug Window in StampW must be closed.

286 Chapter 6: Additional Applications

Now you can see how a DEBUG command can be used to provide a visual depiction of
sensors connected to your BASIC Stamp.

Based on preset values clicking the “Reset” button starts a new diplay. A very advantageous
feature of the program is saving the stored values by clicking “Save messages to file”. This
way we have the features of a data-logger. Saving to a file we can do a post processing with
other programs like EXCEL or other table-processing program. It is possible to add a time
stamp to each saved value.

Figure 82 shows the actual stored values until breaking the transmission with “disconnect”.

The high magnitudes on the left site of the diagram are made with a tilt of +/-90 degree,
moving the ADXL202. They are equal to the result of +/- 1 g, working to the tilt-sensor from
the earth acceleration force.

All StampPlot Lite settings can be set from BASIC Stamp with the DEBUG command. Setting
a “I"” before the argument defines a control for Stamp Plot. Different parameters to this
enhanced DEBUG commands are for controls.

Table 17 shows the controls and how they work for Stamp Plot Lite.

Chapter 6: Additional Applications 287

Nr. Control Argument Explanation
1 ITITL message Sets to title of the form to the message
2 IUSRS message Sets the User Status box to display the message
3 IBELL Sounds the bell on the PC
4 IAMAX value Sets the plot maximum analog value
5 IAMIN value Sets the plot minimum analog value
MinValue Sets the plots analog maximum and minimum as
6 ISPAN ! above but also adds the range to the Range Drop-
MaxValue
Down box
7 IAMUL value Sets the value to multiply incoming data by
8 ITMAX value Sets the plot maximum time (seconds)
9 ITMIN value Sets the plot minimum time (seconds)
10 'PNTS value Sets the number of data points to collect
11 'PLOT ON/OFF Enables/disables the plotting of data
12 IRSET Resets the plot and all data
13 ICLRM Clears the message field
14 ICLMM Clears the min/max recorded values
15 ICMMR ON/OEF Enables/Disables clearing of Min/Max recorded
values on reset
16 'MAXS Sets the plot to STOP when data points are full
17 'MAXR Sets the plot to RESET when data points are full
Enables/disables the plot from shifting when
18 ISHFT ON/OFF recording data (may cause a loss of data accuracy if
enabled)
19 ITSMP ON/OEF Enables time stamplng of list messages, messages
and data saved to files
20 ISAVD ON/OEF Enables saving of analog and digital data to files
(stampdat.txt)
21 ISAVM ON/OFF Enables saving of messages to a file (stampmsg.txt)
22 IDELD Deletes the saved data file (stampdat.txt)
23 DELM Deletes the saved message file (stampmsg.txt)

Table 17 Commands to Control Stamp Plot Lite

For example, the following command starts the plotting process:

288 Chapter 6: Additional Applications

DEBUG "! PLOT ON', CR

Because Stamp Plot is designed with Visual Basic 6, it is for Windows 95 and higher versions
only. For studying applications with Stamp Plot Lite take a look to the experiments from
“Stamps in Class” from Parallax. Selmaware Solutions has also created tutorials
[www.selmaware.com/tutorials].

Chapter 7: Appendix 289

7 Appendix

7.1 Examples to Wiring the I/O Pins

7.1.1 Keys

Figure 83 shows how to connect a pushbutton to an I/O pin. Beside the respective key the
parameter Downstate for the BUTTON command is determined by the circuit.

WCC WCC
o [u]
e :F downstate = 1 H 10k
> >
H 10k e '. downstate =0
G\:N?D GJNZ:I

Figure 83 Connecting a Pushbutton

7.1.2 Tone Output
For tone output one can connect an amplifier or a speaker to the BASIC Stamp. C1 capacitor

is not required
C2 capacitor is optional

Figure 84 shows different possibilities for connecting an external amplifier or speaker.

290 Chapter 7: Appendix

o —F———+—) Bne

GHDO
[SPEAKER
ll .
1o
o>—] G
100
T 10U
GHO GHND

C1 capacitor is not required
C2 capacitor is optional

Figure 84 BS2 Tone Output

When connecting an external amplifier inserting a filter circuit is recommended. At the same
time such a filter circuit protects the I/O pin against a short-circuit.

Chapter 7: Appendix 291

7.2 Baudmode Parameter in SERIN and SEROUT

The following tables list the parameter Baudmode for standard baud rates.

BS2 BS2e
8-bit 8-bit 7-bit 7-bit
Baud Rate no-parity no-parity even-parity even-parity
inverted true inverted true
300 19697 3313 27889 11505
600 18030 1646 26222 9838
1200 17197 813 25389 9005
2400 16780 396 24972 8588
4800 16572 188 24764 8380
9600 16468 84 24660 8276
BS2sx BS2p
8-bit 8-bit 7-bit 7-bit
Baud Rate no-parity no-parity even-parity even-parity
inverted true inverted true
1200 18447 2063 26639 10255
2400 17405 1021 25597 9213
4800 16884 500 25076 8692
9600 16624 240 24816 8432
Remark:

Has SEROUT to work with Open Collector, then add 32768 to the concerning Baudmode
value.

If I/O pin 16 (Rpin = 16 and/or Tpin=16) is used for serial communication, then independently
of the assigned Baudmode the polarity is always inverted and the transmitter has an active
output.

292 Chapter 7: Appendix

7.3 Hayes Command Set

The Hayes Command Set is a common standard for Modems.

It acts using special initialization strings and commands to set the modem in a defined state of
operation (for example, data compression on (V42bis), error correction on (V42), speaker off,
etc.).

Such a command begins usually with AT (AT means Attention) and tells the modem that
command follow.

Some important AT commands are listed now. A claim on completeness is not laid.

Chapter 7: Appendix 293

AT Begin of a command

A/ Repeat last executed command
A Answer Call

\Bn Transmits break n (1-9) * 100 ms

&CO0 DCD always on
&C1 DCD follows the carrier

\CO No buffering of data
\C1 Buffers all data after calling the modem
\C2 No buffering of data after calling the modem

Dial command — allowed characters in the dial string:
0-9,- Phone numbers

"' . Pause, length defined in S8

'W' : Waits for second dial tone

'Nn’, \n' or 'S=n'": Dials the saved phone number (dependant of the
modem)

‘@' : Waits for a silent line (no dial pulses anymore)

'P': IWV (Pulse dial) 'T': MFV (Tone dial)

'I': the modem breaks for a half second (Flash Function)
'R': calls in Answer Mode

&DO0 Ignore DTR

&D1 Switches to common mode, after DTR is Lo

&D2 DTE Controls DTR

&D3 Reset after DTRis Lo

Dn

EO No Command Echo

El Echo Command Chars

%EQ Disable auto retain

%E1 Enable auto retain

&Fn Load Factory Setting n

H On Hook (Hang Up)

H1 Off Hook

L/LO Low speaker volume

L1 Low speaker volume

L2 Medium speaker volume

L3 High speaker volume

M/MO Speaker Off

M1 Speaker On until CD

M2 Speaker always on

M3 Speaker Off during dial

(0] Changes from command to data mode
o1 Changes from command to data mode and optimizes the connection

(MNP/V.42)

294 Chapter 7: Appendix

&R0
&R1
%R
Sn=X
Sn?
&S0
&S1
\S

\Tn

VO
\l
&V
%V
X0
X1
X2
X3
X4
+++

CTS follows RTS

CTS on during Connects Hi

Displays all S-Register

Sets the S-Register n to X

Reads the S-Register n

DSR always Hi

DSR according to the RS-232 Specifications

Displays the modem status

Number of minutes n, nach denen Modem auflegt, wenn keine Daten
Ubertragen werden

Output messages as NUMBER

Output messages as WORD

Displays the important register and flags set by commands
Displays modem firmware version (EPROM)

Modem sends the message 'CONNECT' only

Full Connect messages

'X1' + dial tone detection ('No Dialtone’)

'X1' + busy detection (‘BUSY")

'X1'+'X2' +'X3'

Escape Code (Modem changes from data to command mode)

8 Reference

(1]

(2]

(3]

(4]

(5]

Zahnert, K.; Kiihnel, C.:
BASIC Stamp.

Franzis: Minchen, 1995

Kihnel, C.; Zahnert, K.:
BASIC Stamp 2™ Edition.

Newnes: Boston, u.a., 2000

Edwards, S.:

Chapter 8: Reference 295

Programming and Customizing the BASIC Stamp Computer.

Mc-Graw Hill: New York, u.a., 2001

Williams, A.:
Microcontroller Projects with Basic Stamps.
R&D Books: Lawrence, Kansas, 2000

Held, Gilbert:
The Complete Modem Reference.

The Technician's Guide to Installation,
Communications. 3rd Ed.

Wiley: New York, 1996

Testing and Trouble-Free

9 Links

Author’s website

http://www.ckuehnel.ch

Parallax’s website

http://www.parallax.com

Information to the BASIC Stamp
http://www.nutsvolts.com/stmpindx.htm
http://www.nutsvolts.com/ftpindex.htm
http://mww.emesystems.com/BS2index.htm

http://www.al-williams.com/awce/som.htm

How to control HD44780-based Character-LCD

http://home.iae.nl/users/pouweha/lcd/lcd.shtml

HD44780-Based LCD Modules
http://www.doc.ic.ac.uk/~ih/doc/lcd/
http://www.electronic-assembly.de/deu/pdf/doma/4_20.pdf

StampPlot Pro (S-Plot Pro) Tutorial For the BASIC Stamp 2

http://www.selmaware.com/

Gate Drive Characteristics and Requirements for HEXFET®s

Chapter 9: Links 297

http://www.ckuehnel.ch
http://www.parallax.com
http://www.nutsvolts.com/stmpindx.htm
http://www.nutsvolts.com/ftpindex.htm
http://www.emesystems.com/BS2index.htm
http://www.al-williams.com/awce/som.htm
http://home.iae.nl/users/pouweha/lcd/lcd.shtml
http://www.doc.ic.ac.uk/~ih/doc/lcd/
http://www.electronic-assembly.de/deu/pdf/doma/4_20.pdf
http://www.selmaware.com/

http://mww.powerdesigners.com/Infoweb/design_center/Appnotes_Archive/an-937.pdf

Complete 2400 bps Modem Modules with built-in DAA

http://mww.cermetek.com

MODEM - Basic Hayes Modem AT strings

http://www.computerhope.com/atcom.htm

http://www.powerdesigners.com/InfoWeb/design_center/Appnotes_Archive/an-937.pdf
http://www.cermetek.com
http://www.computerhope.com/atcom.htm

